Devoir surveillé: Trigonométrie

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1: (7 points)

Soit \mathcal{C} le cercle trigonométrique de centre O. Soit A un point de \mathcal{C} .

1. Donner la mesure principale des angles suivants

$$\begin{split} \left(\overrightarrow{OA},\overrightarrow{OP}\right) &= -\frac{\pi}{3} + k \times 2\pi \\ \left(\overrightarrow{OA},\overrightarrow{OQ}\right) &= \frac{70\pi}{3} + k \times 2\pi \\ \left(\overrightarrow{OP},\overrightarrow{OR}\right) &= \frac{2013\pi}{6} + k \times 2\pi \end{split}$$

- 2. Placer les points P, Q et R sur C.
- 3. Determiner la mesure principale des angles suivants :

$$\left(\overrightarrow{OP},\overrightarrow{OQ}\right),\left(\overrightarrow{OQ},\overrightarrow{OR}\right)$$

- 4. Quelle est la nature du triangle \overrightarrow{OPQ} ? En déduire la mesure principale de l'angle $(\overrightarrow{PA}, \overrightarrow{PO})$.
- 5. Quelle est la mesure principale de l'angle $\left(\overrightarrow{PQ},\overrightarrow{PA}\right)$?

Exercice 2: (6 points)

On veut résoudre l'équation suivante $\sqrt{2}\cos x - 1 \ge 0$ sur $] - \pi$; π [.

- 1. Résoudre l'équation suivante $\sqrt{2}\cos x 1 = 0$.
- 2. Placer sur le cercle trigonométrique les points A et B associés aux deux solutions.
- 3. Colorier en rouge l'arc de cerle correspondant aux x tel que $\cos x \ge \frac{1}{\sqrt{2}}$.
- 4. En déduire l'ensemble des solutions dans] $-\pi$; π [de l'équation $\sqrt{2}\cos x 1 \ge 0$.

Exercice 3: (4 points)

Résoudre dans \mathbb{R} l'équation suivante (penser à factoriser)

$$2\sin^2 x - \sin x = 0$$

Exercice 4: (3 points)

Soient A, B, C, D et E quatres points. On suppose que AEB et BCD sont isocèles et que BDE est équilatéral. Enfin on pose que $\left(\overrightarrow{AE},\overrightarrow{AB}\right) = \left(\overrightarrow{CB},\overrightarrow{CD}\right) = \frac{2\pi}{3} + k \times 2\pi$.

- 1. Donner la mesure principale de $(\overrightarrow{BA}, \overrightarrow{BC})$.
- 2. En déduire $(\overrightarrow{AC}, \overrightarrow{AB})$.
- 3. Démontrer que (AC) et (DE) sont parallèles.

