Construction de la figure

- Placer 3 points A, B, C (les renommer si necessaire avec clic droit).
- En utilisant l'outil "polygone", tracer le triangle *ABC*.
- Placer le point M sur le segment [AB].
- Tracer la parallèleà (BC) passant par M.
- Placer le point N point d'intersection de cette droite et de [AC].
- 6. Effacer la droite (clic droit puis décocher "Afficher l'objet").
 - $\stackrel{\frown}{\longrightarrow}$ Tracer le triangle AMN (toujours avec l'outil polygone).
- Déplacer les points pour vérifier que la figure est bien faite.

Mesure et distance

Maintenant que la figure est faite nous allons utiliser les outils de Géogebra pour mesurer notre figure et faire les calculs à notre place.

Un tableur 2.1

- 1. Ouvrir le tableur de Géogebra (affichage > Tableur).
- 2. Completer le tableau pour qu'il soit le même que dans le figure ci dessous.

	A	B	С	D	E	F	G
1							
2							
3	Triangle AMN	AM=		AN=		MN =	
4	Triangle ABC	AB=		AC=		BC=	
5							

Mesure et calculs 2.2

- 1. Nous allons commencer par mesurer la distance AM pour cela taper dans la case C3 : =Distance[A,M].
- 2. Puis dans la case C4, nous allons y mettre la distance AB en tapant : =Distance[A,B].
- 3. Finir de completer les cases E3, E4, G3 et G4.
- 4. Le tableau ainsi créé est-il un tableau de proportionnalité? Proposer un calcul à faire faire par Géogebra pour vérifier que le tableau est un tableau de proportionnalité.

Vérfications 2.3

Déplacer les points pour vérifier que les distances sont bien proportionnelles quelque soit la forme du triangle et la position de M sur le segment [AB].

