\documentclass[a4paper,12pt, table]{/media/documents/Cours/Prof/Enseignements/2014-2015/tools/style/classDS} \usepackage{/media/documents/Cours/Prof/Enseignements/2014-2015/2014_2015} %\geometry{left=10mm,right=10mm, top=10mm, bottom=10mm} % Title Page \titre{4} % \seconde \premiereS \PSTMG \TSTMG \classe{\seconde} \date{6 mai 2015} %\duree{1 heure} \sujet{\Var{infos.num}} % DS DSCorr DM DMCorr Corr \typedoc{DM} %\printanswers \begin{document} \maketitle Vous devez rendre le sujet avec la copie. \begin{questions} \question \begin{parts} \part Développer et simplifier les expressions suivantes \Block{set A = Expression.random("({a}x + {b})({a} - {c}x)")} \Block{set B = Expression.random("({a}x + {b})^2 + {c}")} \Block{set C = Expression.random("{d}x + {c} + 4({a}x + {b})^2")} \begin{subparts} \begin{multicols}{2} \subpart $A = \Var{A}$ \begin{solution} \Block{set Ar = A.simplify()} \begin{eqnarray*} \Var{Ar.explain() | calculus(name = "A", sep = "=", end = "")} \end{eqnarray*} \end{solution} \subpart $B = \Var{B}$ \begin{solution} \Block{set Br = B.simplify()} \begin{eqnarray*} \Var{Br.explain() | calculus(name = "A", sep = "=", end = "")} \end{eqnarray*} \end{solution} \subpart $C = \Var{C}$ \begin{solution} \Block{set Ar = C.simplify()} \begin{eqnarray*} \Var{Ar.explain() | calculus(name = "A", sep = "=", end = "")} \end{eqnarray*} \end{solution} \end{multicols} \end{subparts} \part Factoriser les expressions suivantes \Block{set A = Expression.random("{a}x^2 - x")} \Block{set B = Expression.random("{a*a}x^2 + {b*b} + {2*a*b}x ", ["{a}>0", "{b}>0"])} \Block{set C = Expression.random("{a*a}x^2 - {b*b}")} \Block{set D = Expression.random("{a*a}x^2 - {2*a*b}x + {b*b}", ["{a}>0", "{b}>0"])} \begin{subparts} \begin{multicols}{2} \subpart $A = \Var{A}$ \subpart $B = \Var{B}$ \subpart $C = \Var{C}$ \subpart $D = \Var{D}$ \end{multicols} \end{subparts} \part Résoudre les équations suivantes \Block{set A = Polynom.random(degree = 1)} \Block{set B1 = Polynom.random(degree = 1)} \Block{set B2 = Polynom.random(degree = 1)} \Block{set C1 = Polynom.random(degree = 2)} \Block{set D = Expression.random("({a}x + {b})({c}x - {d})", ["{b} > 0", "{d} > 0"])} \begin{subparts} \begin{multicols}{2} \subpart $\Var{A} = 0$ \subpart $\Var{B1} = \Var{B2}$ \columnbreak \subpart $\Var{C1} = \Var{C1.a}x^2$ \subpart $\Var{D} = 0$ \end{multicols} \end{subparts} \end{parts} \question \begin{parts} \Block{set Ax, Ay, Bx, By, Cx, Cy, Dx, Dy= random_str("{a},{b},{c},{d},{e},{f},{g},{h}", conditions = ["{g-e} != 0", "{h-f} != 0", "{c-a}/{g-e} == {d-b}/{h-f}"]).split(',')} \part Soit $A(\Var{Ax} ; \Var{Ay})$, $B(\Var{Bx} ; \Var{By})$, $C(\Var{Cx} ; \Var{Cy})$ et $D(\Var{Dx} ; \Var{Dy})$. Est-ce que les vecteurs $\vec{AB}$ et $\vec{CD}$ sont colinéaires? \Block{set Ax, Ay, Bx, By, Cx, Cy, Dx, Dy= random_str("{a},{b},{c},{d},{e},{f},{g},{h}", conditions = ["{g-e} != 0", "{h-f} != 0","{c-a}/{g-e} != {d-b}/{h-f}"]).split(',')} \part Soit $A(\Var{Ax} ; \Var{Ay})$, $B(\Var{Bx} ; \Var{By})$, $C(\Var{Cx} ; \Var{Cy})$ et $D(\Var{Dx} ; \Var{Dy})$. Est-ce que les vecteurs $\vec{AB}$ et $\vec{CD}$ sont colinéaires? \Block{set Ax, Ay, Bx, By, Cx, Cy, Dx, Dy= random_str("{a},{b},{c},{d},{e},{f},{g},{h}", conditions = ["{g-e} != 0", "{h-f} != 0","{c-a}/{g-e} == {d-b}/{h-f}"]).split(',')} \part Soit $A(\Var{Ax} ; \Var{Ay})$, $B(\Var{Bx} ; \Var{By})$, $C(\Var{Cx} ; \Var{Cy})$ et $D(\Var{Dx} ; \Var{Dy})$. Est-ce que les droites $(AC)$ et $(BD)$ sont colinéaires? \end{parts} \question \begin{parts} \part Faire les calculs suivants en \textbf{détaillant les étapes} et en simplifiant les fractions. \Block{set A = Expression.random("{a} / {b} * {c}", conditions = ["{b} not in [1, -1]"])} \Block{set B = Expression.random("{a} / {b} + {c} / {k*b}", conditions = ["{b} not in [1, -1]"])} \Block{set C = Expression.random("{a} / {b} + {c} / {d}", conditions = ["gcd({b},{d})==1"]) } \Block{set D = Expression.random("{a} / {b} + {c}", conditions = ["{b} not in [-1,1]"]) } \begin{multicols}{2} \begin{subparts} \subpart $\displaystyle A = \Var{A}$ \begin{solution} \Block{set Ar = A.simplify()} \begin{eqnarray*} \Var{Ar.explain() | calculus(name = "A", sep = "=", end = "")} \end{eqnarray*} \end{solution} \subpart $\displaystyle B = \Var{B}$ \begin{solution} \Block{set Br = B.simplify()} \begin{eqnarray*} \Var{Br.explain() | calculus(name = "A", sep = "=", end = "")} \end{eqnarray*} \end{solution} \subpart $\displaystyle C = \Var{C}$ \begin{solution} \Block{set Cr = C.simplify()} \begin{eqnarray*} \Var{Cr.explain() | calculus(name = "A", sep = "=", end = "")} \end{eqnarray*} \end{solution} \subpart $\displaystyle D = \Var{D}$ \begin{solution} \Block{set Dr = D.simplify()} \begin{eqnarray*} \Var{Dr.explain() | calculus(name = "A", sep = "=", end = "")} \end{eqnarray*} \end{solution} \end{subparts} \end{multicols} \part Mettre les expressions suivantes sur le même dénominateur \Block{set A = Expression.random("{a} / ({b}x) * {c}", conditions = ["{b} not in [1, -1]"])} \Block{set B = Expression.random("{a} / {b} + ({c}x) / {k*b}", conditions = ["{b} not in [1, -1]"])} \Block{set C = Expression.random("({a}x) / {b} + {c} / ({d}x)", conditions = ["gcd({b},{d})==1"]) } \Block{set D = Expression.random("{a} / ({b}x) + {c}", conditions = ["{b} not in [-1,1]"]) } \begin{multicols}{2} \begin{subparts} \subpart $\displaystyle A = \Var{A}$ \subpart $\displaystyle B = \Var{B}$ \subpart $\displaystyle C = \Var{C}$ \subpart $\displaystyle D = \Var{D}$ \end{subparts} \end{multicols} \end{parts} \end{questions} \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: "master" %%% End: