Cours: Tangente et nombre dérivé

Première S 2 - Septembre 2014

1 Équation d'une droite

Définition: Un point M(x,y) est un point de la droite d si et seulement si ses coordonnées vérifie l'équation suivante

$$y = ax + b$$

On appelle cette équation, l'équation de la d.

Remarque:

- *a* est le coefficient directeur de *d*.
- b est l'ordonnée à l'origine de d.

Méthode: Retrouver l'équation d'une droite à partir de 2 points.

2 Nombre dérivé

Définition: Soit f une fonction définie sur un intervalle I contenant a.

Dire que f est dérivable en a, c'est dire que quand h tend vers 0, le taux de variation $\frac{f(a+h)-f(a)}{h}$ tend vers un réel l, ce que l'on note

$$Lim\frac{f(a+h)-f(a)}{h} = l$$

l est appelé le nombre dérivé de f en a. On le note f'(a).

Exemples: Calculs de limites de taux d'accroissement sans difficultés techniques (x^2 en 0 et une fonction affine).

Cf p71 exo résoluent - plus techniques que ce que je veux pour le moment

3 Tangente à une courbe

Définition: f une fonction dérivable en a, \mathcal{C}_f sa courbe représentative et A le point de \mathcal{C}_f de coordonnées (a, f(a)).

La tangente à la courbe C_f au point A est la droite passant par A et dont le coefficient directeur est f'(a).

Exemples: Tracer la tangente à C_f en x=1 où $f:x\mapsto x^2$, on donne f'(1)=2.

Propriété: f une fonction dérivable en a, C_f sa courbe représentative et A le point de C_f de coordonnées (a, f(a)).

L'équation de la tangente à C_f en a est

$$y = f'(a)(x-a) + f(a)$$

Première S 2 – 2014-2015