% Calcul et priorité %----------------------- \question \begin{center} \textbf{Durée : 10min \hspace{3cm} Thème : Calcul} \end{center} Calculer les quantités suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a}*{b}*{c}*{d}")} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}-{b}-{c}", conditions = ["{a} > 0", "{a} < {b}", "{b} > 0", "{c}<0"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a}*{b}*{e}-{c}*{d}")} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a}-{b}*{c}-{d}")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a}-{b}+{c}-{d}")} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a}*{b}*{c}*{d}")} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée : 10min \hspace{3cm} Thème : Calcul} \end{center} Calculer les quantités suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a}*{b}*{c}*{d}")} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}-{b}-{c}", conditions = ["{a} > 0", "{a} < {b}", "{b} > 0", "{c}<0"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a}*{b}*{e}-{c}*{d}")} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a}-{b}*{c}-{d}")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a}-{b}+{c}-{d}")} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a}*{b}*{c}*{d}")} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul} \end{center} Calculer les quantités suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("({a}+{b}*{c})-{d}")} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}-({b}-{c})")} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a}*{b}*({e}-{c}) + {d}")} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("({a}+{b})*{c}-{d}")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a}-({b}+({c}-{d}))")} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("({a}*{b})+({c}*{d})")} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul} \end{center} Calculer les quantités suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("({a}+{b})*({c}-{d})")} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}-({b}+{c})")} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("({a}+{b})*({e}-{c}) + {d}")} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("-({a}+{b})*{c}-{d}")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a}-({b}({c}-{d}) + {e})")} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("({a}-{b})*({c}*{d})")} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul} \end{center} Calculer les quantités suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a}^2+{b}")} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}^2*{a}")} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a}^2*{a}^3*{a}")} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a}*{-a}^2*{-a}^3")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul} \end{center} Calculer les quantités suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("({a}+{b})^2-{d}")} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}-({b}+{c})^2")} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a}^2- {e}^2")} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a}^2*{a}^2*{-a}^3")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} % Fractions % ---------------------- \question \begin{center} \textbf{Durée: 10 min\hspace{3cm} Thème: Fractions} \end{center} Simplifier les fractions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a}/{k*a}",conditions = ["{a}!=1", "{k} != 1"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a} / {k*a}", conditions = ["{a%k} != 0", "{a}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{k*a} / {l*a}",conditions = ["{a}!=1", "{k} != 1", "{k}!={l}"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{k*a} / {l*a}",conditions = ["{a}!=1", "{k} != 1", "{k}!={l}"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{k*a} / {a}",conditions = ["{a}!=1", "{k} != 1"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{l*a} / {k*a}",conditions = ["{a}!=1", "{k} != 1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} / {b} + {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a} / {b} + {c} / {k*b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a} / {k*b} + {c} / {b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a}/{b} + {c}",conditions = ["not {b} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a} / {b} + {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a} / {b} + {c} / {e}",conditions = ["not {b} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} / {b} * {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a} / {b} * {c} / {k*b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a} / {k*b} * {c} / {b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a}/{b} * {c}",conditions = ["not {b} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a} * {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a} * {b} / {c} * {e}",conditions = ["not {c} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10 min \hspace{3cm} Thème: Fractions} \end{center} Simplifier les fractions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a}/{k*a}",conditions = ["{a}!=1", "{k} != 1"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a} / {k*a}", conditions = ["{a%k} != 0", "{a}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{k*a} / {l*a}",conditions = ["{a}!=1", "{k} != 1", "{k}!={l}"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{k*a} / {l*a}",conditions = ["{a}!=1", "{k} != 1", "{k}!={l}"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{k*a} / {a}",conditions = ["{a}!=1", "{k} != 1"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{l*a} / {k*a}",conditions = ["{a}!=1", "{k} != 1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} / {b} + {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a} / {b} + {c} / {e}",conditions = ["not {b} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a}/{b} + {c}",conditions = ["not {b} in [-1,1]"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a} / {k*b} + {c} / {b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a} / {b} + {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a} / {b} + {c} / {k*b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} / {k*b} + {c} / {q*b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a} / {b} + {c} / {k*b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a} / {k*b} + {c} / {b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random(" {c} + {a}/{b} ",conditions = ["not {b} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a} / {k*b} + {a} / {q*b}",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a} / {b} + {c} / {e}",conditions = ["not {b} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} / {b} * {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a} / {b} * {c} / {k*b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a} / {k*b} * {c} / {b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{a}/{b} * {c}",conditions = ["not {b} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("{a} * {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a} * {b} / {c} * {e}",conditions = ["not {c} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("({a} / {b} + {e}) * {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("({a} / {b} + {c}) * 1 / {k*b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a} / {k*b} + {c} / {b} + {e}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{d}({a}/{b} + {c})",conditions = ["not {b} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("({a} + {d}) * {c} / {b} + {e} / {a*b}",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("{a} + {b} / {c} * {e}",conditions = ["not {c} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("({a} / {b} + {e}) * {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("({a} + {c}) / {k*b}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("{a} / {k*b} + {c} / {b} + {e}", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("{d} / {b} * ({a}/{b} + {c})",conditions = ["not {b} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("({a} + {b}) / {b}" ,conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("({a} + {b}) / ({b} + {e})",conditions = ["not {c} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10 min \hspace{3cm} Thème: Fractions} \end{center} Calculer les quantités suivantes et simplifier le résultat \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("({a} / {b})^2",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}^2 / {b}", conditions = ["not {b} in [-1,1]", "{a}!={b}"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("({a} / {b} + {c})^2", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("({a} - {b}^2) / {b}",conditions = ["not {b} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \Block{set E = Expression.random("({a} + {b}) / {b}" ,conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \begin{savedSolution} $ E = \Var{E.simplify()}$ \end{savedSolution} \Block{set F = Expression.random("({a} + {b}) / ({b} + {e})",conditions = ["not {c} in [-1,1]", "not {e} in [-1,1]", "gcd({b},{e})==1"])} \part $F = \Var{F}$ \begin{savedSolution} $ F = \Var{F.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Mettre les calculs suivants sous forme d'une seule fraction. \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} / {2*b} + {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \Block{set B = Expression.random("{a} / (2*n) + {c} / n")} \part $B = \Var{B}$ \Block{set C = Expression.random("{a}/ n + {c} / (3*n)")} \part $C = \Var{C}$ \Block{set D = Expression.random("{a} / n * {c} / (3*n)")} \part $D = \Var{D}$ \Block{set E = Expression.random("{a} / (x+1) + {c} / x",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \Block{set F = Expression.random("{a} / (x+1) * {c} / x", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $F = \Var{F}$ \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20 min \hspace{3cm} Thème: Fractions} \end{center} Mettre les calculs suivants sous forme d'une seule fraction. \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} / {2*b} + {c} / {b}",conditions = ["not {b} in [-1,1]"])} \part $A = \Var{A}$ \Block{set B = Expression.random("{a} / (2*n) + {c} / n")} \part $B = \Var{B}$ \Block{set C = Expression.random("{a}/ n + {c} / (3*n)")} \part $C = \Var{C}$ \Block{set D = Expression.random("{a} / n * {c} / (3*n)")} \part $D = \Var{D}$ \Block{set E = Expression.random("{a} / (x+1) + {c} / x",conditions = ["not {b} in [-1,1]"])} \part $E = \Var{E}$ \Block{set F = Expression.random("{a} / (x+1) * {c} / x", conditions = ["not {b} in [-1,1]", "{k}!=1"])} \part $F = \Var{F}$ \end{multicols} \end{parts} % Fonctions (calculs) % ---------------------- \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Fonctions} \end{center} Calculer l'image de $x_0$ par $f$ dans les cas suivants \begin{parts} \begin{multicols}{2} \Block{set P = Polynom.random(degree = 2)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set x = Expression.random("{a}/{b}", conditions = ["not {b} in [-1,1]"])} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Fonctions} \end{center} Calculer l'image de $x_0$ par $f$ dans les cas suivants \begin{parts} \begin{multicols}{2} \Block{set P = Polynom.random(degree = 2)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 3)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set x = Expression.random("{a}/{b}", conditions = ["not {b} in [-1,1]", "{a} != {b}"])} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set x = Expression.random("{a}/{b}", conditions = ["not {b} in [-1,1]", "{a} != {b}"])} \part $x_0 = \Var{x}$ et $f(x) = \Var{P}$ \begin{savedSolution} $f(x_0) = \Var{P(x)}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Fonctions} \end{center} Calculer l'image de $x_0$ par $f$ dans les cas suivants \begin{parts} \begin{multicols}{2} \Block{set P = Polynom.random(degree = 1)} \Block{set Q = Polynom.random(degree = 1)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \dfrac{\Var{P}}{\Var{Q}}$ \begin{savedSolution} \Block{set ans = Expression([P(x), Q(x), '/']).simplify()}% $f(x_0) = \Var{ans}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 1)} \Block{set Q = Polynom.random(degree = 1)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \dfrac{\Var{P}}{\Var{Q}}$ \begin{savedSolution} \Block{set ans = Expression([P(x), Q(x), '/']).simplify()}% $f(x_0) = \Var{ans}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 1)} \Block{set x = Expression.random("{a}")} \part $x_0 = \Var{x}$ et $f(x) = \dfrac{\Var{P}}{\Var{Q}}$ \begin{savedSolution} \Block{set ans = Expression([P(x), Q(x), '/']).simplify()}% $f(x_0) = \Var{ans}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 1)} \Block{set Q = Polynom.random(degree = 1)} \Block{set x = Expression.random("{a}/{b}", conditions = ["not {b} in [-1,1]", "{a} != {b}"])} \part $x_0 = \Var{x}$ et $f(x) = \dfrac{\Var{P}}{\Var{Q}}$ \begin{savedSolution} \Block{set ans = Expression([P(x), Q(x), '/']).simplify()}% $f(x_0) = \Var{ans}$ \end{savedSolution} \end{multicols} \end{parts} % Expressions literales % --------------------- \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul littéral} \end{center} Réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \part $A = \Var{Expression([P,Q,"+"])}$ \begin{savedSolution} $A = \Var{Expression([P,Q,"+"]).simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \part $B = \Var{Expression([P,Q,"+"])}$ \begin{savedSolution} $B = \Var{Expression([P,Q,"+"]).simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \part $C = \Var{Expression([P,Q,"-"])}$ \begin{savedSolution} $C = \Var{Expression([P,Q,"-"]).simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \Block{set R = Polynom.random(degree = 1)} \part $D = \Var{Expression([P,R,"+",Q,"+"])}$ \begin{savedSolution} $D = \Var{Expression([P,Q,"+"]).simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul littéral} \end{center} Réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \part $A = \Var{Expression([P,Q,"+"])}$ \begin{savedSolution} $A = \Var{Expression([P,Q,"+"]).simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \part $B = \Var{Expression([P,Q,"+"])}$ \begin{savedSolution} $B = \Var{Expression([P,Q,"+"]).simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \part $C = \Var{Expression([P,Q,"-"])}$ \begin{savedSolution} $C = \Var{Expression([P,Q,"-"]).simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \Block{set Q = Polynom.random(degree = 2)} \Block{set R = Polynom.random(degree = 1)} \part $D = \Var{Expression([P,R,"-",Q,"+"])}$ \begin{savedSolution} $D = \Var{Expression([P,R,'-',Q,"+"]).simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Calcul littéral} \end{center} Développer puis réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} ( {b} x + {c})", conditions = ["not {a} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}x ( {b} x + {c})", conditions = ["not {a} in [-1,1]"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("( {b} x + {c}) *{a}x", conditions = ["not {a} in [-1,1]"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("( {b} x + {c}) *{a}x^2")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Calcul littéral} \end{center} Développer puis réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a} ( {b} x + {c}) + {d}x", conditions = ["not {a} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}x^2 ( {b} x + {c}) + {d}x", conditions = ["not {a} in [-1,1]"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("( {b} x + {c}) *{a}x", conditions = ["not {a} in [-1,1]"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("( {b} x + {c}) *{a}x^2 + {e}x^3")} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Calcul littéral} \end{center} Développer puis réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set P = Polynom.random(degree = 1)} \Block{set Q = Polynom.random(degree = 1)} \Block{set A = Expression([P,Q,'*'])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 1)} \Block{set Q = Polynom.random(degree = 1)} \Block{set B = Expression([P,Q,'*'])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 1)} \Block{set Q = Polynom.random(degree = 1)} \Block{set C = Expression([2,P,"*",Q,'*'])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 1)} \Block{set Q = Polynom.random(degree = 1)} \Block{set D = Expression([P,Q,'*'])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Calcul littéral} \end{center} Développer puis réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("( {b} x + {c})^2", conditions = ["not {a} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("( {b} x + {c})^2", conditions = ["not {a} in [-1,1]"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("( {b} x + {c})^2 + {a}", conditions = ["not {a} in [-1,1]"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("( {b} x + {c})^2 + {a}x", conditions = ["not {a} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Calcul littéral} \end{center} Développer puis réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("( {b} x + {c})^2", conditions = ["not {a} in [-1,1]"])} \part $A = \Var{A}$ \begin{savedSolution} $ A = \Var{A.simplify()}$ \end{savedSolution} \Block{set B = Expression.random("{a}x + ( {b} x + {c})^2", conditions = ["not {a} in [-1,1]"])} \part $B = \Var{B}$ \begin{savedSolution} $ B = \Var{B.simplify()}$ \end{savedSolution} \Block{set C = Expression.random("( {b} x + {c})^2 + {a}", conditions = ["not {a} in [-1,1]"])} \part $C = \Var{C}$ \begin{savedSolution} $ C = \Var{C.simplify()}$ \end{savedSolution} \Block{set D = Expression.random("( {b} x + {c})^2 + {a}x", conditions = ["not {a} in [-1,1]"])} \part $D = \Var{D}$ \begin{savedSolution} $ D = \Var{D.simplify()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Calcul littéral} \end{center} Développer puis réduire les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set P = Polynom.random(degree = 2)} \part $A = \Var{str(P).replace('x', '(h+1)')}$ \begin{savedSolution} $ A = \Var{P('h+1')}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \part $B = \Var{str(P).replace('x', '(h-1)')}$ \begin{savedSolution} $ B = \Var{P('h-1')}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \part $A = \Var{str(P).replace('x', '(h+2)')}$ \begin{savedSolution} $ A = \Var{P('h+2')}$ \end{savedSolution} \Block{set P = Polynom.random(degree = 2)} \part $B = \Var{str(P).replace('x', '(h-2)')}$ \begin{savedSolution} $ B = \Var{P('h-2')}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul littéral} \end{center} Factoriser les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a}x({b}x +{c})") } \part $A = \Var{A.simplify()}$ \begin{savedSolution} $ A = \Var{A}$ \end{savedSolution} \Block{set B = Expression.random("{a}x({b}x -{c})") } \part $B = \Var{B.simplify()}$ \begin{savedSolution} $ B = \Var{B}$ \end{savedSolution} \Block{set C = Expression.random("{a}x({b}x^2 +{c})") } \part $C = \Var{C.simplify()}$ \begin{savedSolution} $ C = \Var{C}$ \end{savedSolution} \Block{set D = Expression.random("{a}x^2({b}x +{c})") } \part $D = \Var{D.simplify()}$ \begin{savedSolution} $ D = \Var{D}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 10min \hspace{3cm} Thème: Calcul littéral} \end{center} Factoriser les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("{a}x({b}x +{c})") } \part $A = \Var{A.simplify()}$ \begin{savedSolution} $ A = \Var{A}$ \end{savedSolution} \Block{set B = Expression.random("{a}x({b}x^2 -{c})") } \part $B = \Var{B.simplify()}$ \begin{savedSolution} $ B = \Var{B}$ \end{savedSolution} \Block{set C = Expression.random("{a}x^2({b}x +{c})") } \part $C = \Var{C.simplify()}$ \begin{savedSolution} $ C = \Var{C}$ \end{savedSolution} \Block{set D = Expression.random("{a}x^3({b}x -{c})") } \part $D = \Var{D.simplify()}$ \begin{savedSolution} $ D = \Var{D}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée: 20min \hspace{3cm} Thème: Calcul littéral} \end{center} Factoriser les expressions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Expression.random("({b}x +{c})^2") } \part $A = \Var{A.simplify()}$ \begin{savedSolution} $ A = \Var{A}$ \end{savedSolution} \Block{set B = Expression.random("({b}x +{c})^2") } \part $B = \Var{B.simplify()}$ \begin{savedSolution} $ B = \Var{B}$ \end{savedSolution} \Block{set C = Expression.random("({b}x +{c})^2") } \part $C = \Var{C.simplify()}$ \begin{savedSolution} $ C = \Var{C}$ \end{savedSolution} \Block{set D = Expression.random("({b}x +{c})({b}x - {c})") } \part $D = \Var{D.simplify()}$ \begin{savedSolution} $ D = \Var{D}$ \end{savedSolution} \end{multicols} \end{parts} % Equation / Inéquation % ---------------------- \question \begin{center} \textbf{Durée prévu: 10min \hspace{3cm} Thème : Équations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1)} \part $\Var{A} = 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1)} \part $\Var{A} = 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1)} \part $\Var{A} = 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1)} \part $\Var{A} = 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée prévu: 10min \hspace{3cm} Thème : Équations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1)} \part $\Var{A} = 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set B1 = Polynom.random(degree = 1)} \Block{set B2 = Polynom.random(degree = 1, conditions = ["{a} !="+str(B1._coef[1])])} \part $\Var{B1} = \Var{B2}$ \begin{savedSolution} \Block{set sol = Expression([-(B1._coef[0] - B2._coef[0]), (B1._coef[1] - B2._coef[1]), "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set B1 = Polynom.random(degree = 1)} \Block{set B2 = Polynom.random(degree = 1, conditions = ["{a} !="+str(B1._coef[1])])} \part $\Var{B1} = \Var{B2}$ \begin{savedSolution} \Block{set sol = Expression([-(B1._coef[0] - B2._coef[0]), (B1._coef[1] - B2._coef[1]), "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set B1 = Polynom.random(degree = 1)} \Block{set B2 = Polynom.random(degree = 1, conditions = ["{a} !="+str(B1._coef[1])])} \part $\Var{B1} = \Var{B2}$ \begin{savedSolution} \Block{set sol = Expression([-(B1._coef[0] - B2._coef[0]), (B1._coef[1] - B2._coef[1]), "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée prévu: 20min \hspace{3cm} Thème : Équations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1)} \part $\Var{A} = 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set B1 = Polynom.random(degree = 1)} \Block{set B2 = Polynom.random(degree = 1, conditions = ["{a} !="+str(B1._coef[1])])} \part $\Var{B1} = \Var{B2}$ \begin{savedSolution} \Block{set sol = Expression([-(B1._coef[0] - B2._coef[0]), (B1._coef[1] - B2._coef[1]), "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set C1 = Polynom.random(degree = 2)} \part $\Var{C1} = \Var{C1.a}x^2$ \begin{savedSolution} \Block{set sol = Expression([-C1._coef[0], C1._coef[1], "/"]).simplify()}% La solution est $x = \Var{sol}$ \end{savedSolution} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D2 = Polynom.random(degree = 1)} \Block{set D = Expression([D1, D2, "*"])} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% \Block{set sol2 = Expression([-D2._coef[0], D2._coef[1], "/"]).simplify()}% Les solutions de cette équation sont $x = \Var{sol1}$ ou $x = \Var{sol2}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée prévu: 20min \hspace{3cm} Thème : Équations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D2 = Polynom.random(degree = 1)} \Block{set D = Expression([D1, D2, "*"])} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% \Block{set sol2 = Expression([-D2._coef[0], D2._coef[1], "/"]).simplify()}% Les solutions de cette équation sont $x = \Var{sol1}$ ou $x = \Var{sol2}$ \end{savedSolution} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D2 = Polynom.random(degree = 1)} \Block{set D = Expression([D1, D2, "*"])} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% \Block{set sol2 = Expression([-D2._coef[0], D2._coef[1], "/"]).simplify()}% Les solutions de cette équation sont $x = \Var{sol1}$ ou $x = \Var{sol2}$ \end{savedSolution} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D = D1**2} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% La solution de cette équation est $x = \Var{sol1}$ \end{savedSolution} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D2 = Polynom([-D1._coef[0], D1._coef[1]])} \Block{set D = D1*D2} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% \Block{set sol2 = Expression([-D2._coef[0], D2._coef[1], "/"]).simplify()}% Les solutions de cette équation sont $x = \Var{sol1}$ ou $x = \Var{sol2}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée prévu: 20min \hspace{3cm} Thème : Équations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D = D1**2} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% La solution de cette équation est $x = \Var{sol1}$ \end{savedSolution} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D2 = Polynom([-D1._coef[0], D1._coef[1]])} \Block{set D = D1*D2} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% \Block{set sol2 = Expression([-D2._coef[0], D2._coef[1], "/"]).simplify()}% Les solutions de cette équation sont $x = \Var{sol1}$ ou $x = \Var{sol2}$ \end{savedSolution} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D = D1**2} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% La solution de cette équation est $x = \Var{sol1}$ \end{savedSolution} \Block{set D1 = Polynom.random(degree = 1)} \Block{set D2 = Polynom([-D1._coef[0], D1._coef[1]])} \Block{set D = D1*D2} \part $\Var{D} = 0$ \begin{savedSolution} \Block{set sol1 = Expression([-D1._coef[0], D1._coef[1], "/"]).simplify()}% \Block{set sol2 = Expression([-D2._coef[0], D2._coef[1], "/"]).simplify()}% Les solutions de cette équation sont $x = \Var{sol1}$ ou $x = \Var{sol2}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée prévu: 10min \hspace{3cm} Thème : Inéquations} \end{center} Compléter le tableau suivant \begin{tabular}{|*{3}{c|}p{5cm}|} \hline \rowcolor{highlightbg} Inégalité & Intervalle & Représentation graphique & En français \\ \hline $-2 \leq x \leq 4$&& \monaxe & \\ \hline & $x \in \intOO{0}{+\infty}$ & \monaxe & \\ \hline && \axeCustom{[}{-4}{-2}{[} & \\ \hline && \monaxe & $x$ est strictement plus petit que 1\\ \hline \end{tabular} \question \begin{center} \textbf{Durée prévu: 10min \hspace{3cm} Thème : Inéquations} \end{center} Compléter le tableau suivant \begin{tabular}{|*{3}{c|}p{5cm}|} \hline \rowcolor{highlightbg} Inégalité & Intervalle & Représentation graphique & En français \\ \hline $ x \leq 4$&& \monaxe & \\ \hline & $x \in \R^{+}$ & \monaxe & \\ \hline && \infAxe{[}{2} & \\ \hline && \monaxe & $x$ est supérieur ou égale à -1\\ \hline \end{tabular} \question \begin{center} \textbf{Durée prévu: 10min \hspace{3cm} Thème : Inéquations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} > 0"])} \part $\Var{A} > 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x > \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} > 0"])} \part $\Var{A} > 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x > \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} < 0"])} \part $\Var{A} > 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x < \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} < 0"])} \part $\Var{A} < 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x > \Var{sol}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée prévu: 10min \hspace{3cm} Thème : Inéquations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} > 0"])} \part $\Var{A} \leq 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x \leq \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} > 0"])} \part $\Var{A} > 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x > \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} < 0"])} \part $\Var{A} > 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x < \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} < 0"])} \part $\Var{A} < 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x > \Var{sol}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée prévu: 10min \hspace{3cm} Thème : Inéquations} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} > 0"])} \part $\Var{A} \leq 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x \leq \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} > 0"])} \part $\Var{A} > 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x > \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} < 0"])} \part $\Var{A} > 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x < \Var{sol}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, conditions = ["{a} < 0"])} \part $\Var{A} < 0$ \begin{savedSolution} \Block{set sol = Expression([-A._coef[0], A._coef[1], "/"]).simplify()}% Les solutions de l'inéquations sont les $x$ tels que $x > \Var{sol}$ \end{savedSolution} \end{multicols} \end{parts}