Seconde 6 – À rendre le 19 novembre 2014

Sujet 10

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

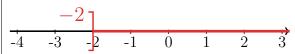
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

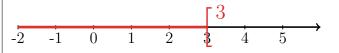
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

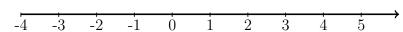
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 4x + 32 > 0.

4x + 32 > 0

On ajoute l'opposé de · · · · ·

 $4x + 32 + \cdots > \cdots$


 $4x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 4x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

- a. $9x + 27 \ge 0$
- b. -5x + 25 < 0
- c. -3x + 9 < 0

- d. 3x 12 > 0
- e. 9x + 27 > 0
- f. -9x + 72 > 3

Seconde 6 – À rendre le 19 novembre 2014

Sujet 11

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

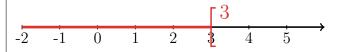
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

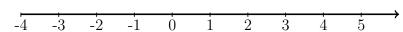
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 4x + 40 > 0.

4x + 40 > 0

On ajoute l'opposé de · · · · ·

 $4x + 40 + \cdots > \cdots$


 $4x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 4x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

2 Résoudre puis représenter les solutions des inéquations suivantes

a. $7x + 56 \ge 0$

d. 9x - 45 > 0

b. -10x + 70 < 0

e. -7x + 63 > 0

c. 4x + 4 < 0

f. -4x + 24 > 3

Seconde 6 – À rendre le 19 novembre 2014

Sujet 12

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

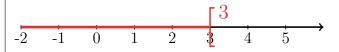
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

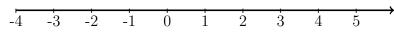
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 8x + 32 > 0.

8x + 32 > 0

On ajoute l'opposé de · · · · ·

 $8x + 32 + \cdots > \cdots$


 $8x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \times 8x$ On $\cdots \times 8x$ On \cdots le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

a.
$$3x + 15 \ge 0$$

d.
$$-7x - 42 > 0$$

b.
$$-6x + 48 < 0$$

e.
$$2x + 16 \ge 0$$

c.
$$10x + 70 < 0$$

f.
$$4x + 16 > 7$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 13

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

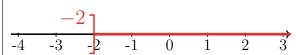
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

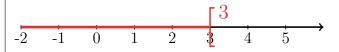
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

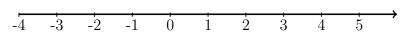
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 8x + 72 > 0.

8x + 72 > 0

On ajoute l'opposé de · · · · ·

 $8x + 72 + \cdots > \cdots$


 $8x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \times 8x$ On $\cdots \times 8x$ On \cdots le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

a.
$$9x + 72 \ge 0$$

d.
$$-3x - 15 > 0$$

b.
$$-9x + 45 < 0$$

e.
$$2x + 2 \ge 0$$

c.
$$-9x + 18 < 0$$

f.
$$-7x + 70 > 9$$

Devoir maison: DM2

Seconde 6 - À rendre le 19 novembre 2014

Sujet 14

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x+6>0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

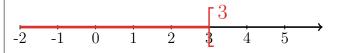
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

La solution est x < 3.

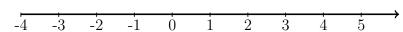
Résoudre en completant puis représenter les solutions de l'inéquation 10x + 60 > 0.

10x + 60 > 0

On ajoute l'opposé de · · · · ·

 $10x + 60 + \cdots > \cdots$

 $10x > \cdots$


On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 10x \bigcirc \cdots \times \cdots$

On · · · · · · le sens de l'inégalité

$$x \bigcirc \frac{\cdots}{\cdots}$$

La solution est · · · · · · · .

- a. $9x + 72 \ge 0$
- b. -9x + 45 < 0
- c. 5x + 35 < 0

- d. 5x 15 > 0
- e. -4x + 20 > 0
- f. 3x + 30 > 9

Seconde 6 – À rendre le 19 novembre 2014

Sujet 15

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

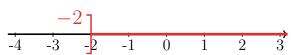
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

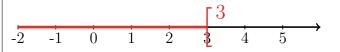
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

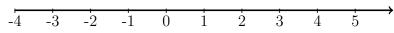
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 2x + 12 > 0.

2x + 12 > 0

On ajoute l'opposé de · · · · ·

 $2x + 12 + \cdots > \cdots$


 $2x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 2x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

a.
$$2x + 18 \ge 0$$

d.
$$-3x - 27 > 0$$

b.
$$-4x + 32 < 0$$

e.
$$10x + 100 \ge 0$$

c.
$$-8x + 8 < 0$$

f.
$$-5x + 10 > -9$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 16

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

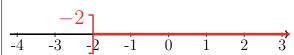
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

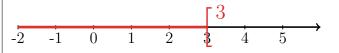
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

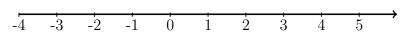
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 4x + 40 > 0.

4x + 40 > 0

On ajoute l'opposé de · · · · ·

 $4x + 40 + \cdots > \cdots$


 $4x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 4x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

2 Résoudre puis représenter les solutions des inéquations suivantes

a. $6x + 54 \ge 0$

d. -8x - 40 > 0

b. -4x + 12 < 0

e. 6x + 24 > 0

c. -10x + 20 < 0

f. -7x + 7 > 5

Seconde 6 – À rendre le 19 novembre 2014

Sujet 17

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

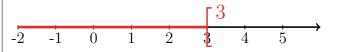
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

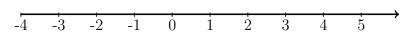
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 3x + 9 > 0.

3x + 9 > 0

On ajoute l'opposé de · · · · ·

 $3x + 9 + \cdots > \cdots$


 $3x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 3x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

a.
$$6x + 30 \ge 0$$

d.
$$-6x - 48 > 0$$

b.
$$-3x + 9 < 0$$

e.
$$-2x + 18 \ge 0$$

c.
$$-4x + 8 < 0$$

f.
$$-9x + 27 > -3$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 18

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

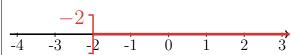
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

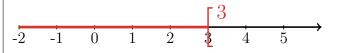
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

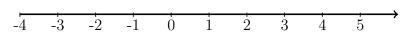
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 5x + 10 > 0.

5x + 10 > 0

On ajoute l'opposé de · · · · ·

 $5x + 10 + \cdots > \cdots$


 $5x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 5x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \frac{\cdots}{\cdots}$$

La solution est · · · · · · · · .

- a. $2x + 18 \ge 0$
- b. -4x + 28 < 0
- c. 10x + 50 < 0

- d. 6x 54 > 0
- e. 2x + 10 > 0
- f. -4x + 12 > -5

Seconde 6 – À rendre le 19 novembre 2014

Sujet 19

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

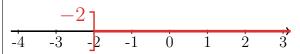
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

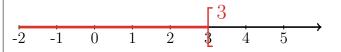
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

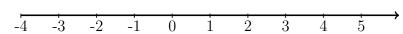
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 4x + 20 > 0.

4x + 20 > 0

On ajoute l'opposé de · · · · ·

 $4x + 20 + \cdots > \cdots$


 $4x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 4x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

2 Résoudre puis représenter les solutions des inéquations suivantes

a. $4x + 16 \ge 0$

d. -7x - 35 > 0

b. -6x + 36 < 0

e. -2x + 18 > 0

c. 5x + 45 < 0

f. 4x + 28 > -3

Seconde 6 – À rendre le 19 novembre 2014

Sujet 1

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

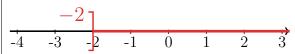
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

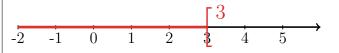
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

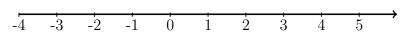
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 4x + 32 > 0.

4x + 32 > 0

On ajoute l'opposé de · · · · ·

 $4x + 32 + \cdots > \cdots$


 $4x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 4x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

a.
$$6x + 36 \ge 0$$

$$\ge 0$$
 d. $3x - 27 > 0$

b.
$$-6x + 48 < 0$$

e.
$$4x + 40 \ge 0$$

c.
$$-3x + 3 < 0$$

f.
$$-10x + 70 > -6$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 20

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

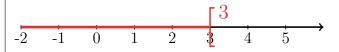
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

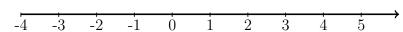
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 2x + 12 > 0.

2x + 12 > 0

On ajoute l'opposé de · · · · ·

 $2x + 12 + \cdots > \cdots$


 $2x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 2x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

2 Résoudre puis représenter les solutions des inéquations suivantes

a. $7x + 63 \ge 0$

d. -6x - 36 > 0

b. -10x + 80 < 0

e. $4x + 36 \ge 0$

c. 6x + 48 < 0

f. 4x + 36 > -4

Seconde 6 – À rendre le 19 novembre 2014

Sujet 21

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

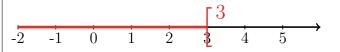
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

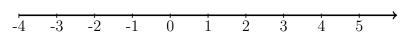
La solution est x < 3.

1 Résoudre en completant puis représenter les solutions de l'inéquation 4x + 8 > 0.

4x + 8 > 0

On ajoute l'opposé de · · · · ·

 $4x + 8 + \cdots > \cdots$


 $4x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 4x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

- a. $4x + 28 \ge 0$
- b. -6x + 36 < 0
- c. -4x + 4 < 0

- d. 5x 10 > 0
- e. -7x + 42 > 0
- f. -7x + 49 > 2

Seconde 6 – À rendre le 19 novembre 2014

Sujet 22

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

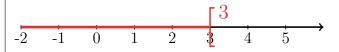
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

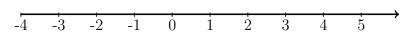
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 3x + 15 > 0.

3x + 15 > 0

On ajoute l'opposé de · · · · ·

 $3x + 15 + \cdots > \cdots$


 $3x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \times 3x$ On \cdots le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

- a. $9x + 81 \ge 0$
- b. -10x + 100 < 0
- c. 6x + 54 < 0

- d. 8x 24 > 0
- e. $5x + 40 \ge 0$
- f. 3x + 15 > 5

Seconde 6 – À rendre le 19 novembre 2014

Sujet 23

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

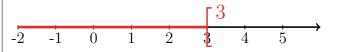
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

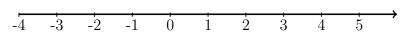
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 3x + 15 > 0.

3x + 15 > 0

On ajoute l'opposé de · · · · ·

 $3x + 15 + \cdots > \cdots$


 $3x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \times 3x$ On \cdots le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

a.
$$4x + 40 \ge 0$$

d.
$$-7x - 70 > 0$$

b.
$$-7x + 42 \le 0$$

e.
$$-7x + 14 \ge 0$$

c.
$$10x + 100 < 0$$

f.
$$-7x + 56 > -5$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 24

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

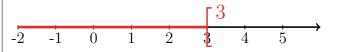
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

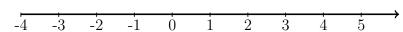
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 5x + 30 > 0.

5x + 30 > 0

On ajoute l'opposé de · · · · ·

 $5x + 30 + \cdots > \cdots$


 $5x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 5x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \frac{\cdots}{\cdots}$$

La solution est · · · · · · · .

- a. $9x + 36 \ge 0$
- b. -9x + 81 < 0
- c. 2x + 2 < 0

- d. 8x 80 > 0
- e. 9x + 36 > 0
- f. 8x + 32 > -6

Seconde 6 – À rendre le 19 novembre 2014

Sujet 25

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

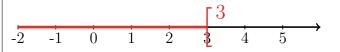
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

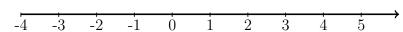
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 2x + 12 > 0.

2x + 12 > 0

On ajoute l'opposé de · · · · ·

 $2x + 12 + \cdots > \cdots$


 $2x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 2x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

a.
$$10x + 100 \ge 0$$

d.
$$-2x - 18 > 0$$

b.
$$-3x + 21 < 0$$

e.
$$-3x + 30 > 0$$

c.
$$4x + 36 < 0$$

f.
$$7x + 21 > -5$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 26

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

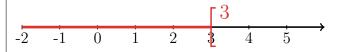
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

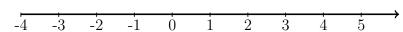
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 9x + 63 > 0.

9x + 63 > 0

On ajoute l'opposé de · · · · ·

 $9x + 63 + \cdots > \cdots$


 $9x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 9x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

- a. $6x + 42 \ge 0$
- b. -10x + 100 < 0
- c. -9x + 27 < 0

- d. 10x 40 > 0
- e. -7x + 35 > 0
- f. -3x + 9 > 7

Seconde 6 – À rendre le 19 novembre 2014

Sujet 2

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

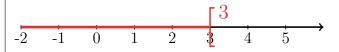
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

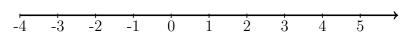
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 2x + 12 > 0.

2x + 12 > 0

On ajoute l'opposé de · · · · ·

 $2x + 12 + \cdots > \cdots$


 $2x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 2x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

a.
$$6x + 48 \ge 0$$

d.
$$-7x - 56 > 0$$

b.
$$-3x + 15 < 0$$

e.
$$8x + 64 \ge 0$$

c.
$$-9x + 27 < 0$$

f.
$$2x + 20 > -6$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 3

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

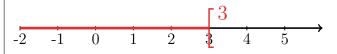
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

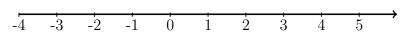
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 4x + 16 > 0.

4x + 16 > 0

On ajoute l'opposé de · · · · ·

 $4x + 16 + \cdots > \cdots$


 $4x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 4x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

2 Résoudre puis représenter les solutions des inéquations suivantes

- a. $7x + 42 \ge 0$
- d. -4x 8 > 0
- b. -7x + 70 < 0

e. 9x + 63 > 0

c. 9x + 90 < 0

f. 2x + 4 > 8

Devoir maison: DM2

Seconde 6 - À rendre le 19 novembre 2014

Sujet 4

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x+6>0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

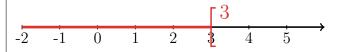
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

La solution est x < 3.

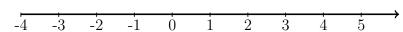
Résoudre en completant puis représenter les solutions de l'inéquation 10x + 20 > 0.

10x + 20 > 0

On ajoute l'opposé de · · · · ·

 $10x + 20 + \cdots > \cdots$

 $10x > \cdots$


On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 10x \bigcirc \cdots \times \cdots$

On · · · · · · le sens de l'inégalité

$$x \bigcirc \frac{\cdots}{\cdots}$$

La solution est · · · · · · · .

a.
$$2x + 10 \ge 0$$

d.
$$-8x - 56 > 0$$

b.
$$-8x + 56 < 0$$

e.
$$-3x + 21 \ge 0$$

c.
$$-7x + 14 < 0$$

f.
$$-6x + 42 > -2$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 5

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

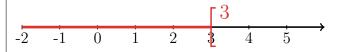
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

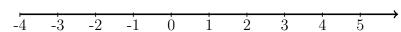
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 8x + 24 > 0.

8x + 24 > 0

On ajoute l'opposé de · · · · ·

 $8x + 24 + \cdots > \cdots$


 $8x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \times 8x$ On $\cdots \times 8x$ On \cdots le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

- a. $9x + 45 \ge 0$
- b. -7x + 63 < 0
- c. -3x + 24 < 0

- d. 3x 6 > 0
- e. -9x + 36 > 0
- f. -9x + 27 > 7

Seconde 6 – À rendre le 19 novembre 2014

Sujet 6

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

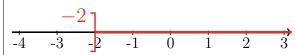
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

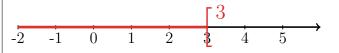
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

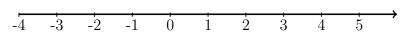
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 5x + 45 > 0.

5x + 45 > 0

On ajoute l'opposé de · · · · ·

 $5x + 45 + \cdots > \cdots$


 $5x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 5x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

a.
$$7x + 70 \ge 0$$

d.
$$-6x - 30 > 0$$

b.
$$-10x + 80 < 0$$

e.
$$-2x + 4 \ge 0$$

c.
$$-9x + 36 < 0$$

f.
$$9x + 36 > -10$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 7

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

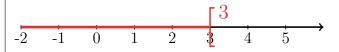
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

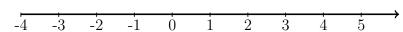
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 3x + 9 > 0.

3x + 9 > 0

On ajoute l'opposé de · · · · ·

 $3x + 9 + \cdots > \cdots$


 $3x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 3x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · · .

a.
$$9x + 72 \ge 0$$

d.
$$-9x - 63 > 0$$

b.
$$-4x + 8 < 0$$

e.
$$6x + 18 \ge 0$$

c.
$$-7x + 21 < 0$$

f.
$$7x + 14 > -5$$

Seconde 6 – À rendre le 19 novembre 2014

Sujet 8

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

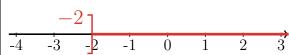
Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$


On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

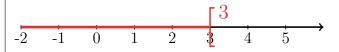
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

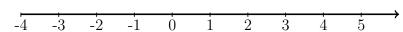
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 5x + 35 > 0.

5x + 35 > 0

On ajoute l'opposé de · · · · ·

 $5x + 35 + \cdots > \cdots$


 $5x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 5x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

2 Résoudre puis représenter les solutions des inéquations suivantes

a.
$$3x + 21 \ge 0$$

a.
$$3x + 21 \ge 0$$

b. $-4x + 20 < 0$
d. $-9x - 45 > 0$
e. $8x + 40 > 0$

c.
$$-7x + 35 < 0$$

f.
$$-2x + 20 > -10$$

Seconde 6 - 2014-2015

Seconde 6 – À rendre le 19 novembre 2014

Sujet 9

Le barème est donné à titre indicatif, il pourra être modifié.

Exercice 1

10 points

Résoudre l'inéquation 3x + 6 > 0 et représenter graphiquement les solutions.

$$3x + 6 > 0$$

On ajoute l'opposé de 6

$$3x + 6 + (-6) > -6$$

$$3x > -6$$

On multiplie par l'inverse de 3 positif

$$\frac{1}{3} \times 3x > \frac{1}{3} \times (-6)$$

On ne change pas le sens de l'inégalité

$$x > \frac{-6}{3} = -2$$

La solution est x > -2.

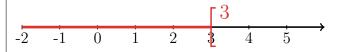
Résoudre l'inéquation -5x + 15 > 0 et représenter graphiquement les solutions.

$$-5x + 15 > 0$$

On ajoute l'opposé de 15

$$-5x + 15 + (-15) > -15$$

$$-5x > -15$$


On multiplie par l'inverse de -5 négatif

$$\frac{1}{-5} \times -5x < \frac{1}{-5} \times (-15)$$

On a changé le sens de l'inégalité

$$x < \frac{-15}{-5} = \frac{3 \times 5}{5} = 3$$

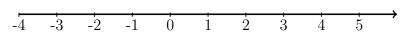
La solution est x < 3.

Résoudre en completant puis représenter les solutions de l'inéquation 2x + 18 > 0.

2x + 18 > 0

On ajoute l'opposé de · · · · ·

 $2x + 18 + \cdots > \cdots$


 $2x > \cdots$

On multiplie par l'inverse de · · · · ·

 $\cdots \cdots \times 2x$ On $\cdots \cdots$ le sens de l'inégalité

$$x \bigcirc \overline{\cdots}$$

La solution est · · · · · · · .

a.
$$8x + 72 \ge 0$$

d.
$$-7x - 70 > 0$$

b.
$$-7x + 35 < 0$$

e.
$$9x + 18 \ge 0$$

c.
$$5x + 40 < 0$$

f.
$$-5x + 35 > 3$$