\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/2014-2015/tools/style/classExo} \usepackage{/media/documents/Cours/Prof/Enseignements/2014-2015/2014_2015} % Title Page \titre{Identités remarquables - Exercices} % \seconde \premiereS \PSTMG \TSTMG \classe{\seconde} \date{Mars 2015} \begin{document} \begin{questions} \question \begin{parts} \part Relier les expressions égales entres elles. \begin{minipage}[c]{0.2\textwidth} \flushright $4x^2 + 4x \qquad \bullet$ \\[0.5cm] $48x + 9x^2 \qquad \bullet$ \\[0.5cm] $6x^2 - 4x \qquad \bullet$ \\[0.5cm] \end{minipage} \hspace{2cm} \begin{minipage}[c]{0.1\textwidth} \begin{itemize} \item $4x(x + 1)$ \item $-2x(-3x + 2)$ \item $4x(x + 4)$ \item $9x(48x + 1)$ \item $x(48x + 9)$ \item $2x(3x - 2)$ \end{itemize} \end{minipage} \part Développer puis factoriser les expressions suivantes \begin{eqnarray*} A = 5x^2 + 10 & \qquad & B = x^2 + x \\ C = 20x^2 + 10 & \qquad & D = (x + 2)^2 - 4 \end{eqnarray*} \end{parts} \question \begin{parts} \part Relier les expressions égales entres elles. \begin{minipage}[c]{0.2\textwidth} \flushright $4x^2 + 4x + 1 \qquad \bullet$ \\[0.5cm] $64x^2 - 48x + 9 \qquad \bullet$ \\[0.5cm] $36x^2 + 60x + 25 \qquad \bullet$ \\[0.5cm] $36x^2 - 60x + 25 \qquad \bullet$ \end{minipage} \hspace{2cm} \begin{minipage}[c]{0.1\textwidth} \begin{itemize} \item $(8x - 3)^2$ \item $(6x + 5)^2$ \item $(2x + 1)^2$ \item $(6x - 5)^2$ \item $(36x + 25)^2$ \item $(4x + 1)^2$ \item $(2x - 1)^2$ \item $(8x + 3)^2$ \end{itemize} \end{minipage} \part Factoriser l'expression suivante \begin{eqnarray*} A & = & 25x^2 + 30x + 9 \end{eqnarray*} \end{parts} \pagebreak \question \begin{parts} \part Relier les expressions égales entres elles. \begin{minipage}[c]{0.2\textwidth} \flushright $4x + 4x^2 + 1 \qquad \bullet$ \\[0.5cm] $9 - 48x + 64x^2 \qquad \bullet$ \\[0.5cm] $4 + 49x^2 - 28x \qquad \bullet$ \\[0.5cm] $16x + 16x^2 + 4 \qquad \bullet$ \end{minipage} \hspace{2cm} \begin{minipage}[c]{0.1\textwidth} \begin{itemize} \item $(2x + 1)^2$ \item $(8x - 3)^2$ \item $(7x + 3)^2$ \item $(2x + 4)^2$ \item $(2x - 1)^2$ \item $(3 - 7x)^2$ \item $(2 + 4x)^2$ \item $(8x + 3)^2$ \end{itemize} \end{minipage} \part Factoriser les expressions suivantes \begin{eqnarray*} A = 4 + 25x^2 + 20x & \qquad & B = -72x + 81x^2 + 16 \end{eqnarray*} \end{parts} \question \begin{parts} \part Relier les expressions égales entres elles. \begin{minipage}[c]{0.15\textwidth} \flushright $4x^2 - 9 \qquad \bullet$ \\[0.5cm] $64x^2 - 16 \qquad \bullet$ \\[0.5cm] $49x^2 - 81\qquad \bullet$ \\[0.5cm] $36 - 9x^2 \qquad \bullet$ \end{minipage} \hspace{2cm} \begin{minipage}[c]{0.2\textwidth} \begin{itemize} \item $(4x - 9)^2$ \item $(3x + 6)(3x - 6)$ \item $(7x + 9)(9 - 7x)$ \item $(8x + 4)^2$ \item $(4x + 9)(4x - 9)$ \item $(7x + 9)(7x - 9)$ \item $(8x - 4)(8x + 4)$ \item $(6 - 3x)(6 + 3x)$ \end{itemize} \end{minipage} \part Factoriser les expressions suivantes \begin{eqnarray*} A = 2x^2 - 9 \hspace{2cm} B = 9x^2 - 25 \\[0.5cm] C = 64x^2 - 1 \hspace{2cm} D = x^2 - 16 \end{eqnarray*} \end{parts} \end{questions} \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: "master" %%% End: