{ "cells": [ { "cell_type": "code", "execution_count": 120, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "from opytex import texenv\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Informations sur le devoir" ] }, { "cell_type": "code", "execution_count": 121, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'classe': '\\\\seconde', 'date': '6 mai 2015', 'titre': 'DM 4'}" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds_name = \n", "classe = \n", "\n", "latex_info = {}\n", "latex_info['titre'] = \n", "latex_info['classe'] = \n", "latex_info['date'] = \n", "latex_info" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Import et premiers traitements" ] }, { "cell_type": "code", "execution_count": 122, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "notes = pd.ExcelFile(\"./../../../notes_\"+classe+\".xls\")\n", "notes.sheet_names\n", "notes = notes.parse(ds_name)" ] }, { "cell_type": "code", "execution_count": 123, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index(['DM_0506', 'av_arrondi', 'num_sujet', 'Malus', 'Exercice 1', '1.1.a',\n", " '1.1.b', '1.1.c', '1.2.a', '1.2.b', '1.2.c', '1.2.d', '1.3.a', '1.3.b',\n", " '1.3.c', '1.3.d', 'Exercice 2', '2.1', '2.2', '2.3', 'Exercice 3',\n", " '3.1.a', '3.1.b', '3.1.c', '3.1.d', '3.2.a', '3.2.b', '3.2.c', '3.2.d'],\n", " dtype='object')" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "notes.index" ] }, { "cell_type": "code", "execution_count": 124, "metadata": { "collapsed": true }, "outputs": [], "source": [ "notes = notes.T" ] }, { "cell_type": "code", "execution_count": 125, "metadata": { "collapsed": false }, "outputs": [], "source": [ "notes = notes.drop('av_arrondi', axis=1)\n", "notes = notes.drop('num_sujet', axis=1)" ] }, { "cell_type": "code", "execution_count": 126, "metadata": { "collapsed": false }, "outputs": [], "source": [ "barem = notes[:1]\n", "notes = notes[1:]\n", "#notes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Supression des notes inutiles " ] }, { "cell_type": "code", "execution_count": 127, "metadata": { "collapsed": false }, "outputs": [], "source": [ "notes = notes[notes[ds_name].notnull()]\n", "notes = notes[notes[ds_name] != 'abs']" ] }, { "cell_type": "code", "execution_count": 128, "metadata": { "collapsed": false }, "outputs": [], "source": [ "notes = notes.astype(float)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Traitement des notes" ] }, { "cell_type": "code", "execution_count": 129, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "Index(['DM_0506', 'Malus', 'Exercice 1', '1.1.a', '1.1.b', '1.1.c', '1.2.a',\n", " '1.2.b', '1.2.c', '1.2.d', '1.3.a', '1.3.b', '1.3.c', '1.3.d',\n", " 'Exercice 2', '2.1', '2.2', '2.3', 'Exercice 3', '3.1.a', '3.1.b',\n", " '3.1.c', '3.1.d', '3.2.a', '3.2.b', '3.2.c', '3.2.d'],\n", " dtype='object')" ] }, "execution_count": 129, "metadata": {}, "output_type": "execute_result" } ], "source": [ "notes.T.index" ] }, { "cell_type": "code", "execution_count": 130, "metadata": { "collapsed": false }, "outputs": [], "source": [ "list_exo = [\"Exercice 1\", \"Exercice 2\", \"Exercice 3\"]" ] }, { "cell_type": "code", "execution_count": 131, "metadata": { "collapsed": false }, "outputs": [], "source": [ "notes[list_exo] = notes[list_exo].applymap(lambda x:round(x,2))\n", "#notes[list_exo]" ] }, { "cell_type": "code", "execution_count": 132, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "['1.1.a',\n", " '1.1.b',\n", " '1.1.c',\n", " '1.2.a',\n", " '1.2.b',\n", " '1.2.c',\n", " '1.2.d',\n", " '1.3.a',\n", " '1.3.b',\n", " '1.3.c',\n", " '1.3.d',\n", " '2.1',\n", " '2.2',\n", " '2.3',\n", " '3.1.a',\n", " '3.1.b',\n", " '3.1.c',\n", " '3.1.d',\n", " '3.2.a',\n", " '3.2.b',\n", " '3.2.c',\n", " '3.2.d']" ] }, "execution_count": 132, "metadata": {}, "output_type": "execute_result" } ], "source": [ "item_avec_note = list_exo + [ds_name, \"Malus\"]\n", "sous_exo = [i for i in notes.T.index if i not in item_avec_note]\n", "sous_exo" ] }, { "cell_type": "code", "execution_count": 133, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def toRepVal(val):\n", " if pd.isnull(val):\n", " return \"\\\\NoRep\"\n", " elif val == 0:\n", " return \"\\\\RepZ\"\n", " elif val == 1:\n", " return \"\\\\RepU\"\n", " elif val == 2:\n", " return \"\\\\RepD\"\n", " elif val == 3:\n", " return \"\\\\RepT\"\n", " else:\n", " return val" ] }, { "cell_type": "code", "execution_count": 134, "metadata": { "collapsed": false }, "outputs": [], "source": [ "notes[item_avec_note] = notes[item_avec_note].fillna(\".\")\n", "#notes" ] }, { "cell_type": "code", "execution_count": 135, "metadata": { "collapsed": true }, "outputs": [], "source": [ "eleves = notes.copy()\n", "eleves[sous_exo] = notes[sous_exo].applymap(toRepVal)" ] }, { "cell_type": "code", "execution_count": 136, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "27" ] }, "execution_count": 136, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(notes.T.index)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Preparation du fichier .tex" ] }, { "cell_type": "code", "execution_count": 157, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bilan = texenv.get_template(\"tpl_bilan.tex\")\n", "with open(\"./bilan.tex\",\"w\") as f:\n", " f.write(bilan.render(eleves = eleves, barem = barem, ds_name = ds_name, latex_info = latex_info, nbr_questions = len(barem.T)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Un peu de statistiques" ] }, { "cell_type": "code", "execution_count": 138, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "count 28.000000\n", "mean 14.696429\n", "std 5.894661\n", "min 0.000000\n", "25% 14.375000\n", "50% 16.500000\n", "75% 18.625000\n", "max 20.000000\n", "Name: DM_0506, dtype: float64" ] }, "execution_count": 138, "metadata": {}, "output_type": "execute_result" } ], "source": [ "notes[ds_name].describe()" ] }, { "cell_type": "code", "execution_count": 139, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 139, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE8BJREFUeJzt3X+MZfdZ3/H3x15HIYSygkjbxLvVIMVB2ELsEslZOVSe\n9JfsVbvQKoJYioJTqVmVbmOlKgKkAOYv+CfUdXCdlXCypqpiRUEYB21IQrPjJqq0DsS7rJN1a4u4\n2IGskRxbSRYkL376x5yx71zfH+fOnpkz9/j9kkZzv+d8z7nPPHv2mTPPfO+dVBWSpGG4qu8AJEnd\nsahL0oBY1CVpQCzqkjQgFnVJGhCLuiQNSKuinuTqJI8m+cyU/XcneSLJuSSHug1RktRW2zv1O4Cv\nA69a1J7kCPDWqroO+ABwb3fhSZIWMbeoJ9kPHAF+F8iEKUeB+wGq6gywN8m+LoOUJLXT5k79vwC/\nCLw0Zf+1wNMj42eA/VcYlyRpC2YW9ST/Eni2qh5l8l36y1PHxr73gCT1YM+c/TcBR5u++euBf5Dk\n96rqfSNzvgkcGBnvb7ZtksRCL0lbUFWzbqo3Sds39EpyM/Cfq+pfjW0/AhyvqiNJDgN3VdXhCcfX\nIoFptiR3VtWdfccxBOayW+azvfWb3Xk1OAsV9Xl36uOqCeQYQFWdqKpTSY4keRL4HvD+Bc+prVnp\nO4ABWek7gIFZ6TuA17LWRb2qHgYebh6fGNt3vOO4JElb4CtKl9fJvgMYkJN9BzAwJ/sO4LWsdU/9\nip/InrokbbIdPXXv1JdUktW+YxgKc9kt89kvi7okDYjtF0nqie0XSdJMFvUlZd+yO+ayW+azXxZ1\nSRoQe+qS1BN76pKkmSzqS8q+ZXfMZbfMZ78s6pI0IPbUJakn9tQlSTNZ1JeUfcvumMtumc9+WdQl\naUDsqUtST+ypS5JmsqgvKfuW3TGX3TKf/Zpb1JO8PsmZJGeTPJbkzglzVpO8kOTR5uPD2xKtJGmm\nVj31JG+oqktJ9gBfBu6oqjMj+1eB/1RVR2ecw566JI3oradeVZeah68DrgFemvjMkqRetSrqSa5K\ncha4CHy+qr4yNqWAm5KcS3IqyfVdB6rN7Ft2x1x2y3z2q+2d+ktVdRDYD7wjyQ1jU74KHKiqnwA+\nCjzYbZiSpDYWXqee5FeBS1X1kRlzvgG8vaqeG9lWwP3AU82m54GzVbXW7F8FcOzYsePXyhg4vd7o\nWGuGq83jk814BfiNhXrqc4t6kjcBl6vq+STfB3wO+K2qOjUyZx/wbFVVkhuBT1XVyth5/EWpJI3o\n6xelbwa+mOQc8AjrPfVTSY4lOdbMeTdwvum73wW8p20A2hr7lt0xl90yn/3aM29CVZ0HfnLC9hMj\nj+8B7uk2NEnSonzvF0nqie/9IkmayaK+pOxbdsdcdst89suiLkkDYk9dknpiT12SNJNFfUnZt+yO\nueyW+eyXRV2SBsSeuiT1xJ66JGkmi/qSsm/ZHXPZLfPZL4u6JA2IPXVJ6ok9dUnSTBb1JWXfsjvm\nslvms18WdUkaEHvqktQTe+qSpJks6kvKvmV3zGW3zGe/Zhb1JK9PcibJ2SSPJblzyry7kzyR5FyS\nQ9sSqSRprrk99SRvqKpLSfYAXwbuqKozI/uPAMer6kiSdwD/taoOTziPPXVJGtFLT72qLjUPXwdc\nA7w0NuUocH8z9wywN8m+tgFIkrozt6gnuSrJWeAi8Pmq+srYlGuBp0fGzwD7p5zrLTM+/EawAPuW\n3TGX3TKf/dozb0JVvQQcTPKDwB8kuaGqvjY2bfxHgyk/T1zz/+CqZl8Krn4JrnkJ/v4q+Lu/TfJv\nqmoNXrkwHE8es/5vsmvicex4h8et1mJvtC36ihc43SZOWGs+rzaPTzbjlXaHj1honXqSXwUuVdVH\nRrZ9DFirqgea8ePAzVV1cezYGb2jvwRueK7qOz+86Bcg6bVnO3rR22F+nGFHe+pJ3pRkb/P4+4B/\nDlwYm/YQ8L5mzmHg+fGCLknaGfN66m8GvpjkHPAI6z31U0mOJTkGUFWngL9I8iRwAviFbY1YgH3L\nLpnLbpnPfs3sqVfVeeAnJ2w/MTY+3nFckqQt2NH3frGnLqkL9tSn820CJGlALOpLyr5ld8xlt8xn\nvyzqkjQg9tQlLR176tN5py5JA2JRX1L2LbtjLrtlPvtlUZekAbGnLmnp2FOfzjt1SRoQi/qSsm/Z\nHXPZLfPZL4u6JA2IPXVJS8ee+nTeqUvSgFjUl5R9y+6Yy26Zz35Z1CVpQOypS1o69tSn805dkgbE\nor6k7Ft2x1x2y3z2a25RT3IgyekkX0vyWJIPTpizmuSFJI82Hx/ennAlSbPM/MPTjReBD1XV2SRv\nBP4syReq6sLYvIer6mj3IWqSqlrrO4ahMJfdMp/9mnunXlXfqqqzzePvAheAt0yY2usvJCRJC/bU\nk6wAh4AzY7sKuCnJuSSnklzfTXiaxr5ld8xlt8xnv9q0XwBoWi+fBu5o7thHfRU4UFWXktwKPAi8\n7dVnuR1YaR7vBQ4Cq8348p4kqxs/um1cGI4nj4GDSXZNPI4d7+R43Rqv1I+NzePjdX3FuznW6fFt\n3r8GnGzGKyyq1Tr1JNcAfwR8tqruajH/G8Dbq+q5kW2uU5fUCdepT9dm9UuA+4CvTyvoSfY180hy\nI+vfLJ6bNFeStH3a9NTfCbwXeNfIksVbkxxLcqyZ827gfJKzwF3Ae7YpXjXsW3bHXHbLfPZrbk+9\nqr7MnOJfVfcA93QVlCRpa3zvF0lLx576dL5NgCQNiEV9Sdm37I657Jb57JdFXZIGxJ66pKVjT306\n79QlaUAs6kvKvmV3zGW3zGe/LOqSNCD21CUtHXvq03mnLkkDYlFfUvYtu2Muu2U++2VRl6QBsacu\naenYU5/OO3VJGhCL+pKyb9kdc9kt89kvi7okDYg9dUlLx576dN6pS9KAWNSXlH3L7pjLbpnPfs0t\n6kkOJDmd5GtJHkvywSnz7k7yRJJzSQ51H6okaZ65f3gaeBH4UFWdTfJG4M+SfKGqLmxMSHIEeGtV\nXZfkHcC9wOHtCVkAVbXWdwxDYS67ZT77NfdOvaq+VVVnm8ffBS4AbxmbdhS4v5lzBtibZF/HsUqS\n5liop55kBTgEnBnbdS3w9Mj4GWD/lQSm2exbdsdcdst89qtN+wWApvXyaeCO5o79VVPGxhPW6dwO\nrDSP9wIHgdVmfHlPktWNH902LgzHk8fAwSS7Jh7HjtuO15f5dWGNV+rHWvN5fLxui/GebhNFVWXa\n+TbHOj2+zfvXgJPNeKVNCJu0Wqee5Brgj4DPVtVdE/Z/DFirqgea8ePAzVV1cWSO69QltV5jvtPr\nu191dAdr4XflOvUkAe4Dvj6poDceAt7XzD8MPD9a0CVJO6NNT/2dwHuBdyV5tPm4NcmxJMcAquoU\n8BdJngROAL+wfSEL7Ft2yVx2y3z2a25Pvaq+TLtVMsc7iUiStGW+94ukHWVPffPxvveLJGkqi/qS\nsm/ZHXPZLfPZL4u6JA2IPXVJO8qe+ubj7alLkqayqC8p+5bdMZfdMp/9sqhL0oDYU5e0o+ypbz7e\nnrokaSqL+pKyb9kdc9kt89kvi7okDYg9dUk7yp765uPtqUuSprKoLyn7lt0xl90yn/2yqEvSgNhT\nl7Sj7KlvPt6euiRpKov6krJv2R1z2S3z2a+5RT3Jx5NcTHJ+yv7VJC+M/FHqD3cfpiSpjbl/eBr4\nBPBR4PdmzHm4qo52E5LaqKq1vmMYCnPZLfPZr7l36lX1JeDbc6Zt+ZcRkqTudNFTL+CmJOeSnEpy\nfQfn1Bz2LbtjLrtlPvvVpv0yz1eBA1V1KcmtwIPA2yZPvR1YaR7vBQ4Cq8348p4kqxs/um1cGI4n\nj4GDSXZNPI4dLzKG5tPL///Hxxvbtrp/jVFbjXfzcy1+/rbHb96/BpxsxissqtU69SQrwGeq6sdb\nzP0G8Paqem5su+vUJblOfez4XbdOPcm+JGke38j6N4rn5hwmSdoGbZY0fhL438CPJnk6yb9NcizJ\nsWbKu4HzSc4CdwHv2b5wtcG+ZXfMZbfMZ7/m9tSr6rY5++8B7uksIknSlvneL5J2lD31zcfvup66\nJGn3sKgvKfuW3TGX3TKf/bKoS9KA2FOXtKPsqW8+3p66JGkqi/qSsm/ZHXPZLfPZL4u6JA2IPXVJ\nO8qe+ubj7alLkqayqC8p+5bdMZfdMp/9sqhL0oDYU5e0o+ypbz7enrokaSqL+pKyb9kdc9kt89kv\ni7okDYg9dUk7yp765uPtqUuSprKoLyn7lt0xl90yn/1q84enP57kYpLzM+bcneSJJOeSHOo2RElS\nW23u1D8B3DJtZ5IjwFur6jrgA8C9HcWmGapqre8YhsJcdst89mtuUa+qLwHfnjHlKHB/M/cMsDfJ\nvm7CkyQtooue+rXA0yPjZ4D9HZxXM9i37I657Jb57Neejs4zvtxmyhqd24GV5vFe4CCw2owv70my\nuvGj28aF4XjyGDiYZNfEs11j4DTtvOsKnu900mrF2Lu2+eud+7VuLG3bBfmeaX4+15rPq1PGG9u2\nun9tI46O1mxPPn/755h+/Kv3rwEnm/FKi9g2a7VOPckK8Jmq+vEJ+z4GrFXVA834ceDmqro4Ns91\n6lpYF2uFd8NzdBPHbohhPY4rW3vdbm12/+fYPc+x0+vUHwLeB5DkMPD8eEGXJO2Mue2XJJ8Ebgbe\nlORp4NeBawCq6kRVnUpyJMmTwPeA929nwFo32qqSpA1zi3pV3dZizvFuwpEkXQlfUbqkvEuXNIlF\nXZIGxKK+pFwLLGkSi7okDYhFfUnZU5c0iUVdkgbEor6k7KlLmsSiLkkDYlFfUvbUJU1iUZekAbGo\nLyl76pImsahL0oBY1JeUPXVJk1jUJWlALOpLyp66pEks6pI0IBb1JWVPXdIkFnVJGpBWRT3JLUke\nT/JEkl+asH81yQtJHm0+Ptx9qBplT13SJG3+8PTVwO8A/wz4JvCVJA9V1YWxqQ9X1dFtiFGS1FKb\nO/UbgSer6qmqehF4APjpCfPSaWSayZ66pEnaFPVrgadHxs8020YVcFOSc0lOJbm+qwAlSe21KerV\nYs5XgQNV9RPAR4EHrygqzWVPXdIkc3vqrPfRD4yMD7B+t/6yqvrOyOPPJvlvSX6oqp7bfKrbgZXm\n8V7gILDajC/vSbK60VbYKFqOJ4+Bg0l2TTzbNX7Fxpe9OnF85fmcff6NY/r/el+JpZ/n36nxxrat\n7l9js2XavwacbMYrLCpVs2/Ek+wB/g/wT4G/Ah4Bbhv9RWmSfcCzVVVJbgQ+VVUrY+ep6Tf9fwnc\n8FzVd3544a9Agzb7unl5FlW15d/p7MRzdBPHbohhPY55cV7Z/t1yjt3zHIv8u8+9U6+qy0mOA58D\nrgbuq6oLSY41+08A7wb+fZLLwCXgPW0DkCR1Z+6demdP5J16p0ZbAUPmnfpui2E9jt1/B9zFOXbP\ncyzy7+4rSiVpQCzqS+q1cJcuaXEWdUkaEIv6knKduqRJLOqSNCAW9SVlT13SJBZ1SRoQi/qSsqcu\naRKLuiQNiEV9SdlTlzSJRV2SBsSivqTsqUuaxKIuSQNiUV9S9tQlTWJRl6QBsagvKXvqkiaxqEvS\ngFjUl5Q9dUmTWNQlaUDmFvUktyR5PMkTSX5pypy7m/3nkhzqPkyNs6cuaZKZRT3J1cDvALcA1wO3\nJfmxsTlHgLdW1XXAB4B7tylWbXaw7wAk7T7z7tRvBJ6sqqeq6kXgAeCnx+YcBe4HqKozwN4k+zqP\nVOP29h2ApN1nXlG/Fnh6ZPxMs23enP1XHpokaVF75uyvludJu+P+yQuTt//tVfD3L7V8Lq1b6TsA\nSbvPvKL+TeDAyPgA63fis+bsb7ZNcPoHZzzXDyRp+01EQJKf7zuGnTF+zzBhxhVfOzvxHFcex26I\nod2cK92/W86xW56jvXlF/U+B65KsAH8F/Bxw29ich4DjwANJDgPPV9XF8RNVVbeRS5JeZWZRr6rL\nSY4DnwOuBu6rqgtJjjX7T1TVqSRHkjwJfA94/7ZHLUmaKFV2PCRpKHbkFaVtXsCkdpI8leTPkzya\n5JG+41k2ST6e5GKS8yPbfijJF5L83ySfT+Jy0Zam5PPOJM801+ijSW7pM8ZlkeRAktNJvpbksSQf\nbLYvdH1ue1Fv8wImLaSA1ao6VFU39h3MEvoE69fiqF8GvlBVbwP+ZzNWO5PyWcBvN9fooar64x7i\nWkYvAh+qqhuAw8B/aGrlQtfnTtypt3kBkxbjL523qKq+BHx7bPPLL6BrPv/Mjga1xKbkE7xGF1ZV\n36qqs83j7wIXWH8d0ELX504U9TYvYFJ7BfxJkj9N8u/6DmYg9o2s2LoI+IroK/cfm/eCus921uKa\nFYeHgDMseH3uRFH3N7HdemdVHQJuZf3Hs3/cd0BDUusrB7xmr8y9wI+w/v5Efw18pN9wlkuSNwK/\nD9xRVd8Z3dfm+tyJot7mBUxqqar+uvn8N8AfsN7e0pW5mOQfAiR5M/Bsz/Estap6thrA7+I12lqS\na1gv6P+9qh5sNi90fe5EUX/5BUxJXsf6C5ge2oHnHZwkb0jyA83j7wf+BXB+9lFq4SFg49W5Pw88\nOGOu5mgKz4Z/jddoK0kC3Ad8varuGtm10PW5I+vUk9wK3MUrL2D6zW1/0gFK8iOs353D+gvH/oe5\nXEySTwI3A29ivT/5a8AfAp8C/hHwFPCzVfV8XzEukwn5/HVglfXWSwHfAI5NepW5NkvyU8D/Av6c\nV1osvwI8wgLXpy8+kqQB8c/ZSdKAWNQlaUAs6pI0IBZ1SRoQi7okDYhFXZIGxKIuSQNiUZekAfn/\nRtJfj8QdO38AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "notes_seules = notes[ds_name]\n", "notes_seules.hist(bins = (notes_seules.max() - notes_seules.min())*2)" ] }, { "cell_type": "code", "execution_count": 154, "metadata": { "collapsed": false }, "outputs": [], "source": [ "notes_questions = notes[sous_exo]\n", "notes_analysis = notes_questions.describe()" ] }, { "cell_type": "code", "execution_count": 155, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
1.1.a1.1.b1.1.c1.2.a1.2.b1.2.c1.2.d1.3.a1.3.b1.3.c...2.22.33.1.a3.1.b3.1.c3.1.d3.2.a3.2.b3.2.c3.2.d
count25252525NaNNaNNaN2525NaN...NaN25NaNNaNNaNNaNNaNNaNNaNNaN
\n", "

1 rows × 22 columns

\n", "
" ], "text/plain": [ " 1.1.a 1.1.b 1.1.c 1.2.a 1.2.b 1.2.c 1.2.d 1.3.a 1.3.b 1.3.c \\\n", "count 25 25 25 25 NaN NaN NaN 25 25 NaN \n", "\n", " ... 2.2 2.3 3.1.a 3.1.b 3.1.c 3.1.d 3.2.a 3.2.b 3.2.c 3.2.d \n", "count ... NaN 25 NaN NaN NaN NaN NaN NaN NaN NaN \n", "\n", "[1 rows x 22 columns]" ] }, "execution_count": 155, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# J'aimerai récupérer le nom des questions qui ont été le moins répondus\n", "notes_analysis[:1][notes_analysis[:1] == 25]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }