% Dérivation %----------------------- \question \begin{center} \textbf{Durée : 10min \hspace{3cm} Thème : Dérivation} \end{center} Calculer la dérivé des fonctions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1, name = 'f')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'g')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 2, name = 'h')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 2, name = 'i')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 3, name = 'j')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée : 10min \hspace{3cm} Thème : Dérivation} \end{center} Calculer la dérivé des fonctions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 2, name = 'f')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'g')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 3, name = 'h')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 3, name = 'i')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 2, name = 'j')} \part $\Var{A.name}:x \mapsto \Var{A}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \Var{A.derivate()}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Dérivation} \end{center} Calculer la dérivé des fonctions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1, name = 'f')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'g')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 2, name = 'h')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 2, name = 'i')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'j')} \Block{set B = Polynom.random(degree = 1, name = 'f')} \part $\Var{A.name}:x \mapsto \dfrac{\Var{A}}{\Var{B}}$ \begin{savedSolution} \Block{set num = Expression([A.derivate(), B, "*", A, B.derivate(), "*", "-"]).simplify()}% $ \Var{A.derivate().name}(x) = \dfrac{\Var{num}}{\Var{Expression([B,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'k')} \Block{set B = Polynom.random(degree = 1, name = 'f')} \part $\Var{A.name}:x \mapsto \dfrac{\Var{A}}{\Var{B}}$ \begin{savedSolution} \Block{set num = Expression([A.derivate(), B, "*", A, B.derivate(), "*", "-"]).simplify()}% $ \Var{A.derivate().name}(x) = \dfrac{\Var{num}}{\Var{Expression([B,2,"^"])}}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Dérivation} \end{center} Calculer la dérivé des fonctions suivantes \begin{parts} \begin{multicols}{2} \Block{set A = Polynom.random(degree = 1, name = 'f')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'g')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 2, name = 'h')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 2, name = 'i')} \part $\Var{A.name}:x \mapsto \dfrac{1}{\Var{A}}$ \begin{savedSolution} $ \Var{A.derivate().name}(x) = \dfrac{\Var{(-A.derivate())}}{\Var{Expression([A,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'j')} \Block{set B = Polynom.random(degree = 1, name = 'f')} \part $\Var{A.name}:x \mapsto \dfrac{\Var{A}}{\Var{B}}$ \begin{savedSolution} \Block{set num = Expression([A.derivate(), B, "*", A, B.derivate(), "*", "-"]).simplify()}% $ \Var{A.derivate().name}(x) = \dfrac{\Var{num}}{\Var{Expression([B,2,"^"])}}$ \end{savedSolution} \Block{set A = Polynom.random(degree = 1, name = 'k')} \Block{set B = Polynom.random(degree = 1, name = 'f')} \part $\Var{A.name}:x \mapsto \dfrac{\Var{A}}{\Var{B}}$ \begin{savedSolution} \Block{set num = Expression([A.derivate(), B, "*", A, B.derivate(), "*", "-"]).simplify()}% $ \Var{A.derivate().name}(x) = \dfrac{\Var{num}}{\Var{Expression([B,2,"^"])}}$ \end{savedSolution} \end{multicols} \end{parts} % Polynome 2nd degre % ------------------ \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : 2nd degré} \end{center} Tracer le tableau de signe des fonctions suivantes \begin{parts} \begin{multicols}{2} \Block{set f = Polynom.random(degree = 2, name = 'f', conditions = ["{b**2-4*a*c} >0"] )} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'g', conditions = ["{b**2-4*a*c} == 0"])} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'h', conditions = ["{b**2-4*a*c} <0"])} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'i')} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : 2nd degré} \end{center} Tracer le tableau de signe des fonctions suivantes \begin{parts} \begin{multicols}{2} \Block{set f = Polynom.random(degree = 2, name = 'f', conditions = ["{b**2-4*a*c} >0"] )} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'g', conditions = ["{b**2-4*a*c} == 0"])} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'h', conditions = ["{b**2-4*a*c} <0"])} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'i')} \part $\Var{f.name} : x \mapsto \Var{f}$ \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Signe de $\Var{f.name}(x)$/2}\Var{f.tbl_sgn_header()} \Var{f.tbl_sgn()} \end{tikzpicture} \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : 2nd degré} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set f = Polynom.random(degree = 2, name = 'f', conditions = ["{b**2-4*a*c} >0"] )} \part $\Var{f} = 0$ \begin{savedSolution} $\mathcal{S} = \left\{ \Var{f.roots() | join(";")} \right\}$ \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'g', conditions = ["{b**2-4*a*c} == 0"])} \part $\Var{f} = 0$ \begin{savedSolution} $\mathcal{S} = \left\{ \Var{f.roots()[0]} \right\}$ \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'h', conditions = ["{b**2-4*a*c} <0"])} \part $\Var{f} = 0$ \begin{savedSolution} Il n'y a pas de solution. \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'f', conditions = ["{b**2-4*a*c} >0"] )} \part $\Var{f} = 0$ \begin{savedSolution} $\mathcal{S} = \left\{ \Var{f.roots() | join(";")} \right\}$ \end{savedSolution} \end{multicols} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : 2nd degré} \end{center} Résoudre les équations suivantes \begin{parts} \begin{multicols}{2} \Block{set f = Polynom.random(degree = 2, name = 'f', conditions = ["{b**2-4*a*c} >0"] )} \part $\Var{f} = 0$ \begin{savedSolution} $\mathcal{S} = \left\{ \Var{f.roots() | join(";")} \right\}$ \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'g', conditions = ["{b**2-4*a*c} == 0"])} \part $\Var{f} = 0$ \begin{savedSolution} $\mathcal{S} = \left\{ \Var{f.roots()[0]} \right\}$ \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'h', conditions = ["{b**2-4*a*c} <0"])} \part $\Var{f} = 0$ \begin{savedSolution} Il n'y a pas de solution. \end{savedSolution} \Block{set f = Polynom.random(degree = 2, name = 'f', conditions = ["{b**2-4*a*c} >0"] )} \part $\Var{f} = 0$ \begin{savedSolution} $\mathcal{S} = \left\{ \Var{f.roots() | join(";")} \right\}$ \end{savedSolution} \end{multicols} \end{parts} % Variations % ---------- \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Variations} \end{center} \Block{set f = Polynom.random(degree = 2, name = 'f')} Soit $\Var{f.name}$ la fonction définie par \begin{eqnarray*} \Var{f.name} : x \mapsto \Var{f} \end{eqnarray*} \begin{parts} \part Quel est le domaine de définition de $\Var{f.name}$? Quel est son domaine de dérivation? \begin{savedSolution} Domaine de définition: $\R$ \quad Domaine de dérivation: $\R$ \end{savedSolution} \part Calculer la dérivée de $\Var{f.name}$. \begin{savedSolution} $\Var{f.derivate().name} (x) = \Var{f.derivate()}$ \end{savedSolution} \part Déterminer le tableau de variations de $\Var{f.name}$. \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Variations de $\Var{f.name}(x)$/2}{$-\infty$, $\Var{f.alpha}$, $+\infty$} \Var{f.tbl_variation()} \end{tikzpicture} \end{savedSolution} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Variations} \end{center} \Block{set f = Polynom.random(degree = 2, name = 'f')} Soit $\Var{f.name}$ la fonction définie par \begin{eqnarray*} \Var{f.name} : x \mapsto \Var{f} \end{eqnarray*} \begin{parts} \part Quel est le domaine de définition de $\Var{f.name}$? Quel est son domaine de dérivation? \begin{savedSolution} Domaine de définition: $\R$ \quad Domaine de dérivation: $\R$ \end{savedSolution} \part Calculer la dérivée de $\Var{f.name}$. \begin{savedSolution} $\Var{f.derivate().name} (x) = \Var{f.derivate()}$ \end{savedSolution} \part Déterminer le tableau de variations de $\Var{f.name}$. \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2]{$x$/1,Variations de $\Var{f.name}(x)$/2}{$-\infty$, $\Var{f.alpha}$, $+\infty$} \Var{f.tbl_variation()} \end{tikzpicture} \end{savedSolution} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Variations} \end{center} \Block{set f = Polynom.random(degree = 3, name = 'f', conditions = ["{a}>0", "{4*b**2-12*a*c}>0"])} Soit $\Var{f.name}$ la fonction définie par \begin{eqnarray*} \Var{f.name} : x \mapsto \Var{f} \end{eqnarray*} \begin{parts} \part Quel est le domaine de définition de $\Var{f.name}$? Quel est son domaine de dérivation? \begin{savedSolution} Domaine de définition: $\R$ \quad Domaine de dérivation: $\R$ \end{savedSolution} \part Calculer la dérivée de $\Var{f.name}$. \begin{savedSolution} \Block{set fp = f.derivate()}% $\Var{fp.name} (x) = \Var{fp}$ \end{savedSolution} \part Déterminer le tableau de variations de $\Var{f.name}$. \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2.5, lgt=3]{$x$/1,Variations de $\Var{f.name}(x)$/3}\Var{fp.tbl_sgn_header()} \tkzTabVar{-/{}, +/{$f(\Var{fp.roots()[0]})$}, -/{$f(\Var{fp.roots()[1]})$}, +/{} } \end{tikzpicture} \end{savedSolution} \end{parts} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Variations} \end{center} \Block{set f = Polynom.random(degree = 3, name = 'f', conditions = ["{a}<0", "{4*b**2-12*a*c}>0"])} Soit $\Var{f.name}$ la fonction définie par \begin{eqnarray*} \Var{f.name} : x \mapsto \Var{f} \end{eqnarray*} Déterminer les variations de $\Var{f.name}$. \begin{savedSolution} \Block{set fp = f.derivate()}% \begin{tikzpicture} \tkzTabInit[espcl=2.5, lgt=3]{$x$/1,Variations de $\Var{f.name}(x)$/3}\Var{fp.tbl_sgn_header()} \tkzTabVar{+/{}, -/{$f(\Var{fp.roots()[0]})$}, +/{$f(\Var{fp.roots()[1]})$}, -/{} } \end{tikzpicture} \end{savedSolution} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Variations} \end{center} \Block{set f = Polynom.random(degree = 3, name = 'f', conditions = ["{a}<0", "{4*b**2-12*a*c}<0"])} Soit $\Var{f.name}$ la fonction définie par \begin{eqnarray*} \Var{f.name} : x \mapsto \Var{f} \end{eqnarray*} Déterminer les variations de $\Var{f.name}$. \begin{savedSolution} \begin{tikzpicture} \tkzTabInit[espcl=2.5, lgt=3]{$x$/1,Variations de $\Var{f.name}(x)$/2}{$+\infty$, $-\infty$} \tkzTabVar{+/{}, -/{} } \end{tikzpicture} \end{savedSolution} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Variations} \end{center} \Block{set f = Polynom.random(degree = 3, name = 'f', conditions = ["{a}<0", "{4*b**2-12*a*c}==0"])} Soit $\Var{f.name}$ la fonction définie par \begin{eqnarray*} \Var{f.name} : x \mapsto \Var{f} \end{eqnarray*} Déterminer les variations de $\Var{f.name}$. \begin{savedSolution} \Block{set fp = f.derivate()}% \begin{tikzpicture} \tkzTabInit[espcl=5, lgt=3]{$x$/1,Variations de $\Var{f.name}(x)$/2}{$+\infty$, $-\infty$} \tkzTabVar{+/{}, -/{} } \tkzTabVal{1}{2}{0.5}{$\Var{fp.roots()[0]}$}{$f(\Var{fp.roots()[0]})$} \end{tikzpicture} \end{savedSolution} % Suites % ------ \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Suites} \end{center} Calculer les 3 premiers termes et le 10ième terme des 4 suites suivantes \begin{multicols}{2} \begin{parts} \Block{set u = Polynom.random(degree = 2, letter = "n", name = "u")} \part $\Var{u.name}_n = \Var{u}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{u(0)}$ \quad $\Var{u.name}_1 = \Var{u(1)}$ \quad $\Var{u.name}_2 = \Var{u(2)}$ \quad $\Var{u.name}_{10} = \Var{u(10)}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 2, letter = "n", name = "v")} \part $\Var{u.name}_n = \Var{u}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{u(0)}$ \quad $\Var{u.name}_1 = \Var{u(1)}$ \quad $\Var{u.name}_2 = \Var{u(2)}$ \quad $\Var{u.name}_{10} = \Var{u(10)}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 3, letter = "n", name = "w")} \part $\Var{u.name}_n = \Var{u}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{u(0)}$ \quad $\Var{u.name}_1 = \Var{u(1)}$ \quad $\Var{u.name}_2 = \Var{u(2)}$ \quad $\Var{u.name}_{10} = \Var{u(10)}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 2, letter = "n", name = "l")} \Block{set v = Polynom.random(degree = 2, letter = "n", name = "l")} \part $\Var{u.name}_n = \dfrac{\Var{u}}{\Var{v}}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{Expression([u(0),v(0),'/']).simplify()}$ \quad $\Var{u.name}_1 = \Var{Expression([u(1),v(1),'/']).simplify()}$ \quad $\Var{u.name}_2 = \Var{Expression([u(2),v(2),'/']).simplify()}$ \quad $\Var{u.name}_{10} = \Var{Expression([u(10),v(10),'/']).simplify()}$ \quad \end{savedSolution} \end{parts} \end{multicols} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Suites} \end{center} Calculer les 3 premiers termes et le 10ième terme des 4 suites suivantes \begin{multicols}{2} \begin{parts} \Block{set u = Polynom.random(degree = 2, letter = "n", name = "u")} \part $\Var{u.name}_n = \Var{u}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{u(0)}$ \quad $\Var{u.name}_1 = \Var{u(1)}$ \quad $\Var{u.name}_2 = \Var{u(2)}$ \quad $\Var{u.name}_{10} = \Var{u(10)}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 2, letter = "n", name = "v")} \part $\Var{u.name}_n = \Var{u}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{u(0)}$ \quad $\Var{u.name}_1 = \Var{u(1)}$ \quad $\Var{u.name}_2 = \Var{u(2)}$ \quad $\Var{u.name}_{10} = \Var{u(10)}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 3, letter = "n", name = "w")} \part $\Var{u.name}_n = \Var{u}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{u(0)}$ \quad $\Var{u.name}_1 = \Var{u(1)}$ \quad $\Var{u.name}_2 = \Var{u(2)}$ \quad $\Var{u.name}_{10} = \Var{u(10)}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 2, letter = "n", name = "l")} \Block{set v = Polynom.random(degree = 2, letter = "n", name = "l")} \part $\Var{u.name}_n = \dfrac{\Var{u}}{\Var{v}}$ \begin{savedSolution} $\Var{u.name}_0 = \Var{Expression([u(0),v(0),'/']).simplify()}$ \quad $\Var{u.name}_1 = \Var{Expression([u(1),v(1),'/']).simplify()}$ \quad $\Var{u.name}_2 = \Var{Expression([u(2),v(2),'/']).simplify()}$ \quad $\Var{u.name}_{10} = \Var{Expression([u(10),v(10),'/']).simplify()}$ \quad \end{savedSolution} \end{parts} \end{multicols} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Suites} \end{center} Calculer les 3 premiers termes des 4 suites suivantes \begin{multicols}{2} \begin{parts} \Block{set u = Polynom.random(degree = 1, letter = "u_n", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_n", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 2, letter = "u_n", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_n", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \end{parts} \end{multicols} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Suites} \end{center} Calculer les 3 premiers termes des 4 suites suivantes \begin{multicols}{2} \begin{parts} \Block{set u = Polynom.random(degree = 1, letter = "u_n", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_{n-1}", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_{n-1}", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_n = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_n", name = "u")} \Block{set P = Polynom.random([0,"{a}"], conditions=["{a}>0"], letter = 'n')} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u} + \Var{P}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a) + P(1)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a) + P(2)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a) + P(3)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \end{parts} \end{multicols} \question \begin{center} \textbf{Durée : 20min \hspace{3cm} Thème : Suites} \end{center} Calculer les 3 premiers termes des 4 suites suivantes \begin{multicols}{2} \begin{parts} \Block{set u = Polynom.random(degree = 1, letter = "u_n", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_{n-1}", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n} = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_{n-1}", name = "u")} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_n = \Var{u}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \Block{set u = Polynom.random(degree = 1, letter = "u_n", name = "u")} \Block{set P = Polynom.random([0,"{a}"], conditions=["{a}>0"], letter = 'n')} \Block{set a = Expression.random("{a}")} \part $\Var{u.name}_{n+1} = \Var{u} + \Var{P}$ et $\Var{u.name}_0 = \Var{a}$. \begin{savedSolution} \Block{set a = u(a) + P(1)}% $\Var{u.name}_1 = \Var{a}$ \quad \Block{set a = u(a) + P(2)}% $\Var{u.name}_2 = \Var{a}$ \quad \Block{set a = u(a) + P(3)}% $\Var{u.name}_3 = \Var{a}$ \quad \end{savedSolution} \end{parts} \end{multicols}