2015-2016/3e/Nombres_et_operations/Racines_carres/tpl_exo_tech.tex

104 lines
3.6 KiB
TeX
Raw Permalink Normal View History

2017-06-16 06:48:54 +00:00
\documentclass[a5paper,12pt, table]{/media/documents/Cours/Prof/Enseignements/tools/style/classDS}
\usepackage{/media/documents/Cours/Prof/Enseignements/2015_2016}
% Title Page
\titre{Racine carré- Exercices}
% \seconde \premiereS \PSTMG \TSTMG
\classe{Troisième}
\date{Avril 2016}
\geometry{left=10mm,right=10mm, bottom= 10mm, top=10mm}
%\printanswers
\begin{document}
\vfill
\begin{Exo}
Mettre les nombres suivants sous la forme $\sqrt{a}$, puis calculer de carré de chacun de ses nombres.
\begin{multicols}{4}
\begin{enumerate}
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\sqrt{\Var{e}} \times \sqrt{\Var{f}}$
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\sqrt{\Var{e}} \times \sqrt{\Var{f}}$
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\Var{e} \sqrt{\Var{f}}$
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\Var{e} \sqrt{\Var{f}}$
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\sqrt{\Var{e}} \times \sqrt{\Var{f}}$
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\sqrt{\Var{e}} \times \sqrt{\Var{f}}$
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\Var{e} \sqrt{\Var{f}}$
\Block{set e = randint(2, 10)}
\Block{set f = randint(2, 15)}
\item $\Var{e} \sqrt{\Var{f}}$
\end{enumerate}
\end{multicols}
\end{Exo}
\vfill
\begin{Exo}
Mettre les nombres suivants sous la forme $a\sqrt{b}$.
\begin{multicols}{4}
\begin{enumerate}
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\Block{set s = Expression.random("{a}^2*{b}",conditions = ["{a} in [2, 3, 4, 5]" , "{b}>1"])}
\item $\sqrt{\Var{s.simplify()}}$
\end{enumerate}
\end{multicols}
\end{Exo}
\vfill
\begin{Exo}
Ne pas utiliser la calculatrice dans cet exercice.
Calculer la longueur manquante dans les triangles rectangles suivant et mettre sous la forme $a\sqrt{b}$ avec $b$ le plus petit possible.
\begin{enumerate}
\item $ABC$ rectangle en $A$ tel que $AB = \sqrt{3}$ et $AC = \sqrt{2}$.
\item $IJK$ rectangle en $J$ tel que $IJ = 5$ et $JK = \sqrt{7}$.
\item $LMN$ rectangle en $L$ tel que $LM = \sqrt{7}$ et $MN = 7$.
\end{enumerate}
\end{Exo}
\vfill
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: