2015-2016/5e/DM/DM_16_01_25/tpl_DM_160125.tex

183 lines
6.0 KiB
TeX
Raw Normal View History

2017-06-16 06:48:54 +00:00
\documentclass[a4paper,12pt, table]{/media/documents/Cours/Prof/Enseignements/2015-2016/tools/style/classDS}
\usepackage{/media/documents/Cours/Prof/Enseignements/2015-2016/2015_2016}
%\geometry{left=10mm,right=10mm, top=10mm, bottom=10mm}
% Title Page
\titre{1}
% \seconde \premiereS \PSTMG \TSTMG
\classe{Cinquième}
\date{1 février 2016}
%\duree{1 heure}
\sujet{\Var{infos.num}}
% DS DSCorr DM DMCorr Corr
\typedoc{DM}
\geometry{left=10mm,right=10mm, bottom= 10mm, top=10mm}
%\printanswers
\begin{document}
\maketitle
\ifprintanswers
\begin{center}
\Large Solution
\end{center}
\normalsize
\else
\textbf{Nom - Prénom}
\fi
\begin{questions}
\question Completer ces opérations à trous pour qu'il y est égalité.
\begin{multicols}{2}
\begin{parts}
% Facile
\Block{set a,b,tot,ans,c = random_str("{a},{b},{a+b},{a+b-c},{c}", val_min = 25, val_max = 200).split(',')}
\part $\Var{a} + \Var{b} = \quad \cdots \quad + \Var{c}$
\begin{solution}
$\Var{a} + \Var{b} = \Var{ans} + \Var{c} = \Var{tot}$
\end{solution}
% Multiplications
\Block{set a,b,tot,ans,c = random_str("{a}, {7*b}, {a*7*b}, {b}, {a*7}", val_min=2, val_max=14).split(',')}
\part $\Var{a} \times \Var{b} = \quad \cdots \quad \times \Var{c}$
\begin{solution}
$\Var{a} \times \Var{b} = \Var{ans} \times \Var{c} = \Var{tot}$
\end{solution}
% Trou négatif
\Block{set a,b,tot,ans,c = random_str("{a},{b},{a+b},{a+b-c},{c}", conditions = ["{a+b-c}<0"], val_min = 25, val_max = 200).split(',')}
\part $\Var{a} + \Var{b} = \quad \cdots \quad + \Var{c}$
\begin{solution}
$\Var{a} + \Var{b} = \Var{ans} + \Var{c} = \Var{tot}$
\end{solution}
% Multiplications
\Block{set a,b,tot,ans,c = random_str("{a}, {b}, {a*b}, {a*b-c}, {c}",conditions=['{a*b-c}>0'], val_min=2, val_max=20).split(',')}
\part $\Var{a} \times \Var{b} = \quad \cdots \quad + \Var{c}$
\begin{solution}
$\Var{a} \times \Var{b} = \Var{ans} + \Var{c} = \Var{tot}$
\end{solution}
\end{parts}
\end{multicols}
\question Répondre aux questions en indiquant les calculs effectués.
\begin{parts}
\Block{set a,b = random_str("{a},{b}", conditions=["gcd({a},{b})==1", "gcd({a}, 3)==1", "gcd({a}, 7)==1", "gcd({a}, 11)==1", "{2*a} < {b}"], val_min=2, val_max=25).split(",")}
\part Quel nombre multiplié par \Var{a} donne \Var{b}?
\begin{solution}
Quand on multiple \Var{a} par $\frac{\Var{b}}{\Var{a}} = \Var{int(b)/int(a)}$ on obtient $\Var{b}$.
\[ \Var{a} \times \Var{int(b)/int(a)} = \Var{b} \]
\end{solution}
\ifprintanswers
\else
\begin{minipage}[t]{0.5\textwidth}
Réponse: \dotfill
\\[0.2cm]
.\dotfill
\\
\end{minipage}
\vline
\begin{minipage}[t]{1.3\textwidth}
Calculs
\end{minipage}
\fi
\Block{set a,b = random_str("{a},{b}", conditions=["gcd({a},{b})==1", "gcd({a}, 3)==1", "gcd({a}, 7)==1", "gcd({a}, 11)==1", "{2*a} < {b}"], val_min=2, val_max=25).split(",")}
\part Par combien faut-il multiplier $\Var{a}$ pour obtenir $\Var{b}$?
\begin{solution}
Quand on multiple \Var{a} par $\frac{\Var{b}}{\Var{a}} = \Var{int(b)/int(a)}$ on obtient $\Var{b}$.
\[ \Var{a} \times \Var{int(b)/int(a)} = \Var{b} \]
\end{solution}
\ifprintanswers
\else
\begin{minipage}[t]{0.5\textwidth}
Réponse: \dotfill
\\[0.2cm]
.\dotfill
\\
\end{minipage}
\vline
\begin{minipage}[t]{1.3\textwidth}
Calculs
\end{minipage}
\fi
\Block{set a,b = random_str("{a},{b}", conditions=["gcd({a},{b})==1", "gcd({a}, 10)==1"], val_min=2, val_max=25).split(",")}
\part Par combien faut-il multiplier $\Var{a}$ pour obtenir $\Var{b}$?
\begin{solution}
Quand on multiple \Var{a} par $\frac{\Var{b}}{\Var{a}}$ on obtient $\Var{b}$.
Multiplier par $\Var{int(a)/int(b)}$ ne convient pas car c'est une valeur approchée. Si on le multiplie par $\Var{a}$, on n'obtiendra pas exactement $\Var{b}$.
\end{solution}
\ifprintanswers
\else
\begin{minipage}[t]{0.5\textwidth}
Réponse: \dotfill
\\[0.2cm]
.\dotfill
\\
\end{minipage}
\vline
\begin{minipage}[t]{1.3\textwidth}
Calculs
\end{minipage}
\fi
\end{parts}
\question Faire les calculs suivants en détaillant les étapes.
\begin{parts}
\Block{set A = Expression.random("_ + _ * _", val_min = 2)}
\part $A = \Var{A} = \dotfill$ \\
\begin{solution}
$A = \Var{A.simplify().explain() | join(" = ")}$
\end{solution}
\Block{set B = Expression.random("_ * _ + _", val_min = 2)}
\part $B = \Var{B} = \dotfill$ \\
\begin{solution}
$B = \Var{B.simplify().explain() | join(" = ")}$
\end{solution}
\Block{set C = Expression.random("(_ + _)*_", val_min = 2)}
\part $C = \Var{C} = \dotfill$ \\
\begin{solution}
$C = \Var{C.simplify().explain() | join(" = ")}$
\end{solution}
\Block{set D = Expression.random("(_ + _)*_*_ + _", val_min = 2)}
\part $D = \Var{D} = \dotfill$ \\
\begin{solution}
$D = \Var{D.simplify().explain() | join(" = ")}$
\end{solution}
\end{parts}
\question Tracer les symétriques (en codant les traits de constructions)
\hspace{-1cm}
\includegraphics[scale=1.0]{./fig/sym}
\end{questions}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: