{
"cells": [
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from opytex import texenv\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Informations sur le devoir"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'classe': '309', 'date': '18 septembre 2015', 'titre': 'DM 1'}"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_name = \"DM_15_09_18\"\n",
"classe = \"309\"\n",
"\n",
"latex_info = {}\n",
"latex_info['titre'] = \"DM 1\" \n",
"latex_info['classe'] = classe\n",
"latex_info['date'] = \"18 septembre 2015\"\n",
"latex_info"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import et premiers traitements"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"notes = pd.ExcelFile(\"./../../../309.xlsx\")\n",
"notes.sheet_names\n",
"notes = notes.parse(ds_name)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index([ 'DM_15_09_18', 'numero sujet', 'Exercice 1', '1 (PGCD)',\n",
" '2 (Quantités)', 'Exercice 2', 1, 2,\n",
" 3, 4, 5, 6],\n",
" dtype='object')"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.index"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"notes = notes.T"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#notes = notes.drop('av_arrondi', axis=1)\n",
"notes = notes.drop('numero sujet', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" DM_15_09_18 | \n",
" Exercice 1 | \n",
" 1 (PGCD) | \n",
" 2 (Quantités) | \n",
" Exercice 2 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
"
\n",
" \n",
" \n",
" \n",
" BAREME | \n",
" 10 | \n",
" 4 | \n",
" 2 | \n",
" 2 | \n",
" 6 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" DM_15_09_18 Exercice 1 1 (PGCD) 2 (Quantités) Exercice 2 1 2 3 \\\n",
"BAREME 10 4 2 2 6 1 1 1 \n",
"\n",
" 4 5 6 \n",
"BAREME 1 1 1 "
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"barem = notes[:1]\n",
"notes = notes[1:]\n",
"notes\n",
"barem"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Supression des notes inutiles "
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes[notes[ds_name].notnull()]\n",
"#notes = notes[notes[ds_name] != 'abs']"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes.astype(float)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Traitement des notes"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"Index([ 'DM_15_09_18', 'Exercice 1', '1 (PGCD)', '2 (Quantités)',\n",
" 'Exercice 2', 1, 2, 3,\n",
" 4, 5, 6],\n",
" dtype='object')"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.T.index"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"list_exo = [\"Exercice 1\", \"Exercice 2\"]"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Exercice 1 | \n",
" Exercice 2 | \n",
"
\n",
" \n",
" \n",
" \n",
" ABDOU Farida | \n",
" 4.00 | \n",
" 0.33 | \n",
"
\n",
" \n",
" ABOU BACAR Djaha | \n",
" 4.00 | \n",
" 6.00 | \n",
"
\n",
" \n",
" AHAMADA Nabaouya | \n",
" 4.00 | \n",
" 6.00 | \n",
"
\n",
" \n",
" AHAMADI Faina | \n",
" 1.33 | \n",
" 2.67 | \n",
"
\n",
" \n",
" ALI Mardhuia | \n",
" 2.67 | \n",
" 6.00 | \n",
"
\n",
" \n",
" ALI SOULAIMANA Chamsia | \n",
" 2.00 | \n",
" 6.00 | \n",
"
\n",
" \n",
" ALSENE ALI MADI Stela | \n",
" 0.67 | \n",
" 3.33 | \n",
"
\n",
" \n",
" ANDRIATAHIANA Hoby | \n",
" 4.00 | \n",
" 3.00 | \n",
"
\n",
" \n",
" ANLI Emeline | \n",
" 2.00 | \n",
" 4.33 | \n",
"
\n",
" \n",
" ATHOUMANE Naouidat | \n",
" 3.33 | \n",
" 5.33 | \n",
"
\n",
" \n",
" BOUDRA Nassifanya | \n",
" 4.00 | \n",
" 6.00 | \n",
"
\n",
" \n",
" CHANFI Nadhrati | \n",
" 3.33 | \n",
" 2.00 | \n",
"
\n",
" \n",
" COMBO Moinécha | \n",
" 4.00 | \n",
" 6.00 | \n",
"
\n",
" \n",
" HALIDI Nisma | \n",
" 4.00 | \n",
" 5.33 | \n",
"
\n",
" \n",
" HAMZA Samianti | \n",
" 3.33 | \n",
" 1.67 | \n",
"
\n",
" \n",
" HOUMADI Mouslimati | \n",
" 2.67 | \n",
" 5.00 | \n",
"
\n",
" \n",
" HOUMADI Chaharazadi | \n",
" 2.00 | \n",
" 4.67 | \n",
"
\n",
" \n",
" HOUMADI Nasmi | \n",
" 4.00 | \n",
" 6.00 | \n",
"
\n",
" \n",
" HOUMADI Dhoirfia | \n",
" 2.00 | \n",
" 3.67 | \n",
"
\n",
" \n",
" LOUTOUFI Nachima | \n",
" 1.33 | \n",
" 2.33 | \n",
"
\n",
" \n",
" MALIDE El-Anzize | \n",
" 2.00 | \n",
" 2.67 | \n",
"
\n",
" \n",
" MONNE Kevin | \n",
" 4.00 | \n",
" 4.33 | \n",
"
\n",
" \n",
" MOUSSA Roibouanti | \n",
" 4.00 | \n",
" 6.00 | \n",
"
\n",
" \n",
" OUSSENI Hilma | \n",
" 2.00 | \n",
" 3.33 | \n",
"
\n",
" \n",
" SAANLI Natali | \n",
" 4.00 | \n",
" 1.67 | \n",
"
\n",
" \n",
" SAID AHAMADA Roukaya | \n",
" 4.00 | \n",
" 5.00 | \n",
"
\n",
" \n",
" SANDA Issoufi | \n",
" 2.00 | \n",
" 4.67 | \n",
"
\n",
" \n",
" SOILIHI Soifia | \n",
" 2.00 | \n",
" 4.00 | \n",
"
\n",
" \n",
" SOUFIANI Laila | \n",
" 2.00 | \n",
" 2.67 | \n",
"
\n",
" \n",
" YOUSSOUF Sitirati | \n",
" 2.00 | \n",
" 5.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Exercice 1 Exercice 2\n",
"ABDOU Farida 4.00 0.33\n",
"ABOU BACAR Djaha 4.00 6.00\n",
"AHAMADA Nabaouya 4.00 6.00\n",
"AHAMADI Faina 1.33 2.67\n",
"ALI Mardhuia 2.67 6.00\n",
"ALI SOULAIMANA Chamsia 2.00 6.00\n",
"ALSENE ALI MADI Stela 0.67 3.33\n",
"ANDRIATAHIANA Hoby 4.00 3.00\n",
"ANLI Emeline 2.00 4.33\n",
"ATHOUMANE Naouidat 3.33 5.33\n",
"BOUDRA Nassifanya 4.00 6.00\n",
"CHANFI Nadhrati 3.33 2.00\n",
"COMBO Moinécha 4.00 6.00\n",
"HALIDI Nisma 4.00 5.33\n",
"HAMZA Samianti 3.33 1.67\n",
"HOUMADI Mouslimati 2.67 5.00\n",
"HOUMADI Chaharazadi 2.00 4.67\n",
"HOUMADI Nasmi 4.00 6.00\n",
"HOUMADI Dhoirfia 2.00 3.67\n",
"LOUTOUFI Nachima 1.33 2.33\n",
"MALIDE El-Anzize 2.00 2.67\n",
"MONNE Kevin 4.00 4.33\n",
"MOUSSA Roibouanti 4.00 6.00\n",
"OUSSENI Hilma 2.00 3.33\n",
"SAANLI Natali 4.00 1.67\n",
"SAID AHAMADA Roukaya 4.00 5.00\n",
"SANDA Issoufi 2.00 4.67\n",
"SOILIHI Soifia 2.00 4.00\n",
"SOUFIANI Laila 2.00 2.67\n",
"YOUSSOUF Sitirati 2.00 5.00"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes[list_exo] = notes[list_exo].applymap(lambda x:round(x,2))\n",
"notes[list_exo]"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"['1 (PGCD)', '2 (Quantités)', 1, 2, 3, 4, 5, 6]"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"item_avec_note = list_exo + [ds_name]\n",
"sous_exo = [i for i in notes.T.index if i not in item_avec_note]\n",
"sous_exo"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def toRepVal(val):\n",
" if pd.isnull(val):\n",
" return \"\\\\NoRep\"\n",
" elif val == 0:\n",
" return \"\\\\RepZ\"\n",
" elif val == 1:\n",
" return \"\\\\RepU\"\n",
" elif val == 2:\n",
" return \"\\\\RepD\"\n",
" elif val == 3:\n",
" return \"\\\\RepT\"\n",
" else:\n",
" return val"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[item_avec_note] = notes[item_avec_note].fillna(\".\")\n",
"#notes"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"eleves = notes.copy()\n",
"eleves[sous_exo] = notes[sous_exo].applymap(toRepVal)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"11"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(notes.T.index)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preparation du fichier .tex"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"bilan = texenv.get_template(\"tpl_bilan.tex\")\n",
"with open(\"./bilan309.tex\",\"w\") as f:\n",
" f.write(bilan.render(eleves = eleves, barem = barem, ds_name = ds_name, latex_info = latex_info, nbr_questions = len(barem.T)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Un peu de statistiques"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 29.000000\n",
"mean 7.120690\n",
"std 2.149149\n",
"min 3.500000\n",
"25% 5.500000\n",
"50% 7.000000\n",
"75% 9.000000\n",
"max 10.000000\n",
"Name: DM_15_09_18, dtype: float64"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes[ds_name].describe()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAEACAYAAAB1dVfhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEXBJREFUeJzt3XGMpPVdx/HPBxaEo5RVUaAFM6cJta3FBSwlImHRawMV\nsPqHgajtNtqYaIFobSQmlv7V6B+kNTH+YVvuaAJUPYsRQuOh3SU0moPCLR5wtEo4PbAsRCkXCk05\n7usf81xvOXafmefZnfnNd573K9nsPDvD7/ncc898b+azM4MjQgCAyXZc6QAAgMEY1gCQAMMaABJg\nWANAAgxrAEiAYQ0ACQwc1rbfYXvPqq+XbN8wjnAAgD43eZ217eMkPSvpoog4MLJUAIA3aFqDbJP0\nFIMaAMar6bC+VtIdowgCAFjf0DWI7RPVr0DeFREvjDQVAOANZhrc9kpJDx87qG3z4SIA0EJEeNjb\nNqlBrpN05zo7TPt18803F89A/vI5yJ/va9TZq+k2wq9mhhrWtk9R/5eLX2m8hwm3f//+0hE2hPxl\nkb+czNnbGKoGiYjvSjp9xFkAAOvo/DsYFxYWSkfYEPKXRf5yMmdvo9GbYtZcwI6NrgEAk8a22nTL\nDfagGNEvGKfS0tJS6QgbQv6yyF9O5uxtdH5YA0AG1CAAsAZqEABAY50f1tl7L/KXRf5yMmdvo/PD\nGgAyoLMGgDXQWQMAGuv8sM7ee5G/LPKXkzl7G50f1gCQAZ01AKyBzhoA0Fjnh3X23ov8ZZG/nMzZ\n2+j8sAaADOisAWANdNYAgMY6P6yz917kL4v85WTO3kbnhzUAZEBnDQBroLMGADTW+WGdvfcif1nk\nLydz9jYGDmvbs7Z32t5n+wnbF48jGADgqIGdte3bJN0fEbfanpF0SkS8tOp6OmsAU2fSOuvaYW37\nNEl7IuIna27DsAYwdSZtWA+qQbZKesH2dtuP2P687S0bCzhZsvde5C+L/OVkzt7GzBDXXyDp4xHx\nkO3PSbpJ0qdW32hhYUG9Xk+SNDs7q7m5Oc3Pz0s6ekAndXt5eXmi8pB/svKRv9vb0lL1fTO2lyTt\nqLZ7ampQDXKmpH+LiK3V9i9Iuikirlp1G2oQAFMnVQ0SEc9JOmD73OpH2yQ9voF0AIAWhnmd9fWS\nbrf9qKTzJH1mtJHG68jTnqzIXxb5y8mcvY1BnbUi4lFJ7x1DFgDAOvhsEABYQ6rOGgAwGTo/rLP3\nXuQvi/zlZM7eRueHNQBkQGcNAGugswYANNb5YZ299yJ/WeQvJ3P2Njo/rAEgAzprAFgDnTUAoLHO\nD+vsvRf5yyJ/OZmzt9H5YQ0AGdBZA8Aa6KwBAI11flhn773IXxb5y8mcvY3OD2sAyIDOGgDWQGcN\nAGis88M6e+9F/rLIX07m7G10flgDQAZ01gCwBjprAEBjnR/W2Xsv8pdF/nIyZ29jZpgb2d4v6aCk\n1yW9FhEXjTIUAOCNhuqsbT8t6cKI+L81rqOzBjB1MnfWQy8KANhcww7rkLTL9jdsf2yUgcYte+9F\n/rLIX07m7G0M1VlLuiQivm37xyTdZ/vJiHjgyJULCwvq9XqSpNnZWc3NzWl+fl7S0QM6qdvLy8sT\nlYf8k5WP/N3elpaq75uxvSRpR7XdU1ONX2dt+2ZJL0fELdU2nTWAqZOus7a9xfap1eVTJH1A0t72\nAQEATQ3TWZ8h6QHby5J2S7onInaNNtb4HHnakxX5yyJ/OZmztzGws46IpyXNjSELAGAdfDYIAKwh\nXWcNACiv88M6e+9F/rLIX07m7G10flgDQAZ01gCwBjprAEBjnR/W2Xsv8pdF/nIyZ2+j88MaADKg\nswaANdBZAwAa6/ywzt57kb8s8peTOXsbnR/WAJABnTUArIHOGgDQWOeHdfbei/xlkb+czNnb6Pyw\nBoAM6KwBYA101gCAxjo/rLP3XuQvi/zlZM7eRueHNQBkQGcNAGugswYANNb5YZ299yJ/WeQvJ3P2\nNoYa1raPt73H9t2jDgQAeLOhOmvbfyjpQkmnRsQ1x1xHZw1g6qTrrG2fLemDkr4gaeiFAQCbZ5ga\n5LOSPinp8IizFJG99yJ/WeQvJ3P2NmbqrrR9laTnI2KP7fn1brewsKBerydJmp2d1dzcnObn+zc/\nckAndXt5eXmi8kxa/v5TwdFaXFycmOM5acef/GW3paXq+2ZsL0naUW331FRtZ237M5J+S9IhSSdJ\nequkv4+ID6+6DZ31FBtTbzfC9YF2Jq2zHvpNMbYvk/RHEXH1MT9nWE8xhjW6atKGddPXWU/dverI\n056ssufPLvvxz5w/c/Y2ajvr1SLifkn3jzALAGAdfDYIalGDoKuy1yAAgAI6P6yz917Z82eX/fhn\nzp85exudH9YAkAGdNWrRWaOr6KwBAI11flhn772y588u+/HPnD9z9jY6P6wBIAM6a9Sis0ZX0VkD\nABrr/LDO3ntlz59d9uOfOX/m7G10flgDQAZ01qhFZ42uorMGADTW+WGdvffKnj+77Mc/c/7M2dvo\n/LAGgAzorFGLzhpdRWcNAGis88M6e++VPX922Y9/5vyZs7fR+WENABnQWaMWnTW6is4aANBY54d1\n9t4re/7ssh//zPkzZ29j4LC2fZLt3baXbT9m+9NjyAUAWGWoztr2loh4xfaMpK9LujEidlfX0VlP\nMTprdFXKzjoiXqkunijpBEmHWyQDALQ01LC2fZztZUkrknZFxEOjjTU+2Xuv7Pmzy378M+fPnL2N\nmWFuFBGHJc3ZPk3SXbbfHRGPH7l+YWFBvV5PkjQ7O6u5uTnNz89LOnpAJ3V7eXl5ovJMWv6+JUnz\nqy5rE7f7+xxV/v5T2dFaXFycmPNh0s6fUR//xcXFDeUbfP4vVd83Y3tJ0o5qu3fsH2Wgxq+ztv2n\nkl6JiFuqbTrrKZa9s86eP7vRHv+pOHc2r7O2fbrt2eryyZLeL2lf+4AAgKaG6azPkvQ1249KelD9\nzvre0cYan+y9V/b8KIvzJ4+BnXVE7JV0wRiyAADWwWeDoFb2zjd7/uzorGv3wGeDAMC06fywzt7Z\nZc+Psjh/8uj8sAaADOisUSt755s9f3Z01rV7oLMGgGnT+WGdvbPLnh9lcf7k0flhDQAZ0FmjVvbO\nN3v+7Oisa/dAZw0A06bzwzp7Z5c9P8ri/Mmj88MaADKgs0at7J1v9vzZ0VnX7oHOGgCmTeeHdfbO\nLnt+lMX5k0fnhzUAZEBnjVrZO9/s+bOjs67dA501AEybzg/r7J1d9vwoi/Mnj84PawDIgM4atbJ3\nvtnzZ0dnXbsHOmsAmDadH9bZO7vs+VEW508eA4e17XNsL9p+3PZjtm8YRzAAwFEDO2vbZ0o6MyKW\nbb9F0sOSPhQR+6rr6aynWPbON3v+7Oisa/ewuZ11RDwXEcvV5Zcl7ZP0tvYBAQBNNeqsbfcknS9p\n9yjClJC9s8ueH2Vx/uQxM+wNqwpkp6Qbq0fYP7CwsKBerydJmp2d1dzcnObn5yUdPRkmdfvyyy+v\n/4MnsLi4OLLj07ckaX7VZW3idn+fmfP3ny6Pzij/fpeXlzd1vXEf/1HPh83NuyRpR7XdU1NDvc7a\n9gmS7pH01Yj43DHXpe6sx9FLZe5Ms3e+/P2WRWddu4fN7azdT/xFSU8cO6gBAOMxTGd9iaTflHS5\n7T3V1xUjzgVgDOis8xjYWUfE18WbZwCgqM5/Ngid5oDV6awH7WHk63P/Wnf19OcOnw0CAFOGYQ10\nGJ11HgxrAEiAzppOs351OutBexj5+ty/1l09/blDZw0AU4ZhDXQYnXUeDGsASIDOmk6zfnU660F7\nGPn63L/WXT39uUNnDQBThmENdBiddR4MawBIgM6aTrN+dTrrQXsY+frcv9ZdPf25Q2cNAFOGYQ10\nGJ11HgxrAEiAzppOs351OutBexj5+ty/1l09/blDZw0AU4ZhDXQYnXUeDGsASIDOmk6zfnU660F7\nGPn63L/WXT39uUNnDQBThmENdBiddR4Dh7XtW22v2N47jkAAgDcb2FnbvlTSy5K+FBHvWeN6Ouv6\nPYx8/Sno7Ua3On+/RdFZ1+5hczvriHhA0osbygQA2JCZ0gHqHDx4UJ/4xE06dKh0EmA6LS0taX5+\nvnQMDGFThvXCwoJ6vZ4kaXZ2VnNzcz84AY78AqPN9quvvqrt27fr9dd/V9K51d6+VX3fjO1nq8tL\nkuZXXdYmbo9+/f7TtVFaapCn6Xb+/PmPz6gtaVTHZzznzvB56reXJO2otnuNkwz1OmvbPUl3j7uz\nXllZ0dat5+nVV1dGsr60V9J5yt5psj7rd3P9zNn76/M6awCYMsO8dO9OSf8q6VzbB2x/dPSxAACr\nDeysI+K6cQQBAKyPGgQAEmBYA0ACDGsASIBhDQAJMKwBIAGGNQAkwLAGgAQY1gCQAMMaABJgWANA\nAgxrAEiAYQ0ACTCsASABhjUAJMCwBoAEGNYAkADDGgASYFgDQAIMawBIgGENAAkwrAEgAYY1ACQw\ncFjbvsL2k7b/w/YfjyMUAOCNaoe17eMl/aWkKyS9S9J1tt85jmAAgKMGPbK+SNJ/RsT+iHhN0pcl\n/croYwEAVhs0rN8u6cCq7WeqnwEAxmhmwPUxlhQ1vv/9F/XWt149krUPHz6ol18eydIAsKkGDetn\nJZ2zavsc9R9dv4Htzcz0JgcP3jPS9aXR5md91mf9jGuPY/3hOWL9B8+2ZyR9U9IvSfofSQ9Kui4i\n9o0nHgBAGvDIOiIO2f64pH+SdLykLzKoAWD8ah9ZAwAmQ+t3MNo+yfZu28u2H7P96U3MNTa2j7e9\nx/bdpbM0ZXu/7X+v8j9YOk8Ttmdt77S9z/YTti8unWlYtt9RHfMjXy/ZvqF0riZs/0F1v91r+w7b\nP1Q6UxO2b6yyP2b7xtJ5BrF9q+0V23tX/exHbN9n+1u2d9merVuj9bCOiO9Jujwi5iTNSbrC9vva\nrlfQjZKe0AS88qWFkDQfEedHxEWlwzT0F5LujYh3SjpPUpp6LSK+WR3z8yVdKOkVSXcVjjU022+X\ndL2kCyPiPepXnNeWTTU82z8j6XckvVfSz0q6yvZPlU010Hb131y42k2S7ouIcyX9S7W9rg19NkhE\nvFJdPFHSCZIOb2S9cbN9tqQPSvqCJunXvs2ky237NEmXRsStUv93IxHxUuFYbW2T9FREHBh4y8ky\nI2lL9SKCLeq/8iuLn5a0OyK+FxGvS7pf0q8VzlQrIh6Q9OIxP75G0m3V5dskfahujQ0Na9vH2V6W\ntCJpV0Q8tJH1CvispE8q2T8yq4SkXba/YftjpcM0sFXSC7a3237E9udtbykdqqVrJd1ROkQTEfGs\npFsk/bf6r/L6TkT8c9lUjTwm6dKqRtgi6ZclnV04UxtnRMRKdXlF0hl1N97oI+vDVQ1ytqT32X73\nRtYbJ9tXSXo+IvYo4aPTyiURcaGkKyX9vu1LSwca0oykCyT9VURcIOm7GvAUcBLZPlHS1ZL+rnSW\nJmz/sPqP6nqS3ibpLbZ/o2ioBiLiSUl/LmmXpK9K2qO8D7gkSdF/pUdtFbspH5FaPYVd1Js7mUn2\n85Kusf20pDsl/aLtLxXO1EhEfLv6/oL6nWmW3voZSc+seia2U/3hnc2Vkh6ujn8m2yQ9HRH/GxGH\nJH1F/ftDGhFxa0T8XERcJuk76r8fJJsV22dKku2zJD1fd+ONvBrk9CO/vbR9sqT3K9cvif4kIs6J\niK3qP5X9WkR8uHSuYdneYvvU6vIpkj4gaW/9fzUZIuI5SQdsn1v9aJukxwtGaus69f+hz+a/JF1s\n+2T33368Tf1fsqdh+8er7z8h6VeVrIqq/KOkj1SXPyLpH+puPOjt5nXOknRb9TGqx0n6m4i4dwPr\nlZbt1SBnSLqreqv/jKTbI2JX2UiNXC/p9qpKeErSRwvnaaT6B3KbpEy/K5AkRcSDtndKekTSoer7\nX5dN1dhO2z8q6TVJvxcRB0sHqmP7TkmXSTrd9gFJn5L0Z5L+1vZvS9ov6ddr1+BNMQAw+fjfegFA\nAgxrAEiAYQ0ACTCsASABhjUAJMCwBoAEGNYAkADDGgAS+H+jULq3dz6RcwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"notes_seules = notes[ds_name]\n",
"notes_seules.hist(bins = (notes_seules.max() - notes_seules.min())*2)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes_questions = notes[sous_exo]\n",
"notes_analysis = notes_questions.describe()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 1 (PGCD) | \n",
" 2 (Quantités) | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 1 (PGCD) 2 (Quantités) 1 2 3 4 5 6\n",
"count NaN NaN NaN NaN NaN NaN NaN NaN"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# J'aimerai récupérer le nom des questions qui ont été le moins répondus\n",
"notes_analysis[:1][notes_analysis[:1] == 25]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}