Faire les calculs suivants en détaillant les étapes (penser à simplifier les fractions quand c'est possible). \begin{parts} \begin{multicols}{4} \Block{set e = Expression.random("{a} / {b} + {c} / {d}", ["gcd({b},{d})==1"], val_min = 2, val_max=15)} \part $A = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "A")} \end{eqnarray*} \end{solution} \columnbreak \Block{set e = Expression.random("{a} / {b} * {c}/{d}", ["{b} > 1", "{d} > 1"])} \part $B = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "B")} \end{eqnarray*} \end{solution} \columnbreak \Block{set e = Expression.random("{a} / {b} + {c} / {b}", ["{b} > 1"])} \part $C = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "C")} \end{eqnarray*} \end{solution} \columnbreak \Block{set e = Expression.random("{a} / {b} * {c}", ["{b} > 1","{c} > 1", "gcd({c},{b})==1"])} \part $D = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "D")} \end{eqnarray*} \end{solution} \end{multicols} \end{parts}