\begin{parts} \part Développer les expressions suivantes \begin{multicols}{2} \begin{subparts} \Block{set e = Expression.random("_*(_*x + _)")} \subpart $A = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "A")} \end{eqnarray*} \end{solution} \Block{set e = Expression.random("(_*x+_)(_*x + _)", val_min = 2)} \subpart $B = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "B")} \end{eqnarray*} \end{solution} \columnbreak \Block{set e = Expression.random("(_*x + _)^2", val_min = 2)} \subpart $C = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "C")} \end{eqnarray*} \end{solution} \Block{set e = Expression.random("(_*x - _)^2", val_min = 2)} \subpart $D = \Var{e}$ \begin{solution} \begin{eqnarray*} \Var{e.simplify().explain() | calculus(name = "D")} \end{eqnarray*} \end{solution} \end{subparts} \end{multicols} \part Factoriser les expressions suivantes \begin{multicols}{2} \begin{subparts} \Block{set e = Expression.random("{a}x*(_*x + _)", conditions = ['{a} >= 2'])} \subpart $A = \Var{e.simplify()}$ \begin{solution} \begin{eqnarray*} A = \Var{e.simplify()} = \Var{e} \end{eqnarray*} \end{solution} \Block{set e = Expression.random("_x*(_*x + _)")} \subpart $B = \Var{e.simplify()}$ \begin{solution} \begin{eqnarray*} B = \Var{e.simplify()} = \Var{e} \end{eqnarray*} \end{solution} \columnbreak \Block{set e = Expression.random("_x*(_*x + _)")} \subpart $C = \Var{e.simplify()}$ \begin{solution} \begin{eqnarray*} C = \Var{e.simplify()} = \Var{e} \end{eqnarray*} \end{solution} \Block{set e = Expression.random("(_*x + _)^2", val_min=2, val_max = 10)} \subpart $D = \Var{e.simplify()}$ \begin{solution} \begin{eqnarray*} D = \Var{e.simplify()} = \Var{e} \end{eqnarray*} \end{solution} \end{subparts} \end{multicols} \end{parts}