{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "from opytex import texenv\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "plt.style.use(\"seaborn-notebook\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Informations sur le devoir" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'classe': '309', 'date': '15 février 2016', 'titre': 'Brevet Blanc Février'}" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds_name = \"BB_16_02_15\"\n", "classe = \"309\"\n", "\n", "latex_info = {}\n", "latex_info['titre'] = \"Brevet Blanc Février\"\n", "latex_info['classe'] = \"309\"\n", "latex_info['date'] = \"15 février 2016\"\n", "latex_info" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Import et premiers traitements" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "notes = pd.ExcelFile(\"./../../../../notes/\"+classe+\".xlsx\")\n", "notes.sheet_names\n", "notes = notes.parse(ds_name)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ds_name = \"Brevet blanc Fevrier\"" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "Index(['Brevet blanc Fevrier', 'Présentation', 'Exercice 1',\n", " 'Comprendre le programme de calcul', 'Programme à l'envers',\n", " 'Calcul literral', 'Exercice 2', 'Construction', 'Pythagore',\n", " 'Choix proposition', 'Exercice 3', 'Exercice 4',\n", " 'Probabilité « normale »', 'Probabilité « changement »', '2 épreuves',\n", " 'Exercice 5', 'Divisibilité', 'PGCD', 'Réduction', 'Divisibilité',\n", " 'Utilisation du PGCD', 'Exercice 6', 'Extraire l'information',\n", " 'Argumentation', 'Résolution', 'Exercice 7', 'Lecture graphique',\n", " 'Moyenne', 'Total', 'Formule tableur (somme)',\n", " 'Formule tableur (moiyenne)'],\n", " dtype='object')" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "notes.index" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "notes = notes.T" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#notes = notes.drop('av_arrondi', axis=1)\n", "#notes = notes.drop('num_sujet', axis=1)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "barem = notes[:1]\n", "notes = notes[1:]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", " | Brevet blanc Fevrier | \n", "Présentation | \n", "Exercice 1 | \n", "Comprendre le programme de calcul | \n", "Programme à l'envers | \n", "Calcul literral | \n", "Exercice 2 | \n", "Construction | \n", "Pythagore | \n", "Choix proposition | \n", "... | \n", "Exercice 6 | \n", "Extraire l'information | \n", "Argumentation | \n", "Résolution | \n", "Exercice 7 | \n", "Lecture graphique | \n", "Moyenne | \n", "Total | \n", "Formule tableur (somme) | \n", "Formule tableur (moiyenne) | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABDOU Farida | \n", "16.0 | \n", "2.5 | \n", "1.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "0.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "... | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "3.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
ABOU BACAR Djaha | \n", "22.0 | \n", "2.5 | \n", "3.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "3.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "... | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "3.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
AHAMADA Nabaouya | \n", "16.5 | \n", "3.0 | \n", "2.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "... | \n", "0.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "5.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
AHAMADI Faina | \n", "5.0 | \n", "3.0 | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "... | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
ALI Mardhuia | \n", "23.0 | \n", "4.0 | \n", "2.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "3.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "... | \n", "1.5 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "4.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
5 rows × 31 columns
\n", "