2015-2016/3e/DS/DS_15_09_25/Bilan/Bilan313.ipynb
2017-06-16 09:48:54 +03:00

1312 lines
49 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from opytex import texenv\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Informations sur le devoir"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'classe': '313', 'date': '25 septembre 2015', 'titre': 'DS 1'}"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_name = \"DS_15_09_25\"\n",
"classe = \"313\"\n",
"\n",
"latex_info = {}\n",
"latex_info['titre'] = \"DS 1\" \n",
"latex_info['classe'] = classe\n",
"latex_info['date'] = \"25 septembre 2015\"\n",
"latex_info"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import et premiers traitements"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"notes = pd.ExcelFile(\"./../../../\"+classe+\".xlsx\")\n",
"notes.sheet_names\n",
"notes = notes.parse(ds_name)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index([ 'DS_15_09_25', 'numero sujet',\n",
" 'Presentation', 'Exercice 1',\n",
" 1, 2,\n",
" 'Exercice 2', '1 (Division)',\n",
" '2.a (Division)', '2.b (PGCD)',\n",
" 'Exercice 3', '1 (Vrai Faux)',\n",
" '2 (Proba)', '3 (Proba)',\n",
" 'Exercice 4', '1 (Modélisation)',\n",
" '1 (Explication)', '2 (Vérification) bonus !'],\n",
" dtype='object')"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.index"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"notes = notes.T"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#notes = notes.drop('av_arrondi', axis=1)\n",
"notes = notes.drop('numero sujet', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>DS_15_09_25</th>\n",
" <th>Presentation</th>\n",
" <th>Exercice 1</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>Exercice 2</th>\n",
" <th>1 (Division)</th>\n",
" <th>2.a (Division)</th>\n",
" <th>2.b (PGCD)</th>\n",
" <th>Exercice 3</th>\n",
" <th>1 (Vrai Faux)</th>\n",
" <th>2 (Proba)</th>\n",
" <th>3 (Proba)</th>\n",
" <th>Exercice 4</th>\n",
" <th>1 (Modélisation)</th>\n",
" <th>1 (Explication)</th>\n",
" <th>2 (Vérification) bonus !</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>ABDOU Mariam</th>\n",
" <td>18.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4.666667</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>5.500000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ABTOIHI SAID Yasmina</th>\n",
" <td>10.0</td>\n",
" <td>1</td>\n",
" <td>1.5</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3.666667</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>3.833333</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AHAMED Anssuifidine</th>\n",
" <td>7.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>2.000000</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>2</td>\n",
" <td>1.000000</td>\n",
" <td>2</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AHAMED Issihaka</th>\n",
" <td>15.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>5.666667</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3.166667</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>2.333333</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AHMED ABDOU El-Karim</th>\n",
" <td>5.0</td>\n",
" <td>1</td>\n",
" <td>1.5</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1.500000</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ANDILI Chayhati</th>\n",
" <td>14.0</td>\n",
" <td>1</td>\n",
" <td>2.0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>6.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>4.833333</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ANDJILANE Rachma</th>\n",
" <td>8.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>1.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3.166667</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ANLI Koudoussia</th>\n",
" <td>13.5</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>5.000000</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>4.833333</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>1.500000</td>\n",
" <td>NaN</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ATTOUMANI Hanissa</th>\n",
" <td>12.5</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4.666667</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3.000000</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>0.833333</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BACO ABDALLAH Moustadirane</th>\n",
" <td>10.5</td>\n",
" <td>1</td>\n",
" <td>0.5</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3.666667</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>5.000000</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0.500000</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BINALI Maoulida</th>\n",
" <td>13.5</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>5.500000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BOINA Ainati</th>\n",
" <td>12.0</td>\n",
" <td>1</td>\n",
" <td>2.5</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>5.500000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BOINA HASSANI Nahimi</th>\n",
" <td>4.5</td>\n",
" <td>1</td>\n",
" <td>2.0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0.500000</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DAOUD El-Farouk</th>\n",
" <td>12.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>2.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>4.166667</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1.833333</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DJADAR Ifrah</th>\n",
" <td>12.5</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3.666667</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>4.833333</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>HALIBOU Nafilati</th>\n",
" <td>8.5</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>3.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>4.500000</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>HALIDI Tomsoyère</th>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>HOUMADI Himida</th>\n",
" <td>3.0</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1.666667</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0.333333</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>HOUMADI Antufati</th>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2.666667</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2.833333</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>HOUMADI ABDALLAH Abdallah</th>\n",
" <td>13.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3.666667</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>5.000000</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0.500000</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IBRAHIM Laoura</th>\n",
" <td>4.5</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0.500000</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1.000000</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MALIDE ABDOU Nasser</th>\n",
" <td>12.0</td>\n",
" <td>1</td>\n",
" <td>2.5</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>4.166667</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1.500000</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MALIDE Younes</th>\n",
" <td>19.5</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>7.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4.500000</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MOENY MOKO Nadjma</th>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" <td>2.5</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>2.666667</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1.500000</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MOUGNIDAHO Nouriana</th>\n",
" <td>13.0</td>\n",
" <td>1</td>\n",
" <td>2.5</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>5.500000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>1.000000</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MOURTADJOU El-Fazar</th>\n",
" <td>20.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>7.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>5.500000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3.500000</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SAID Chamsoudine</th>\n",
" <td>13.0</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4.000000</td>\n",
" <td>NaN</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>4.833333</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>YANCOUB Toufa</th>\n",
" <td>13.5</td>\n",
" <td>1</td>\n",
" <td>2.5</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>6.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>2.500000</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>1.666667</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>YOUSSOUF Asma</th>\n",
" <td>10.5</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>4.000000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>5.500000</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" DS_15_09_25 Presentation Exercice 1 1 2 \\\n",
"ABDOU Mariam 18.0 1 3.0 3 3 \n",
"ABTOIHI SAID Yasmina 10.0 1 1.5 1 2 \n",
"AHAMED Anssuifidine 7.0 1 3.0 3 3 \n",
"AHAMED Issihaka 15.0 1 3.0 3 3 \n",
"AHMED ABDOU El-Karim 5.0 1 1.5 2 1 \n",
"ANDILI Chayhati 14.0 1 2.0 2 2 \n",
"ANDJILANE Rachma 8.0 1 3.0 3 3 \n",
"ANLI Koudoussia 13.5 1 1.0 1 1 \n",
"ATTOUMANI Hanissa 12.5 1 3.0 3 3 \n",
"BACO ABDALLAH Moustadirane 10.5 1 0.5 0 1 \n",
"BINALI Maoulida 13.5 1 3.0 3 3 \n",
"BOINA Ainati 12.0 1 2.5 3 2 \n",
"BOINA HASSANI Nahimi 4.5 1 2.0 2 2 \n",
"DAOUD El-Farouk 12.0 1 3.0 3 3 \n",
"DJADAR Ifrah 12.5 1 3.0 3 3 \n",
"HALIBOU Nafilati 8.5 1 0.0 0 0 \n",
"HALIDI Tomsoyère 0.0 NaN 0.0 NaN NaN \n",
"HOUMADI Himida 3.0 1 0.0 0 0 \n",
"HOUMADI Antufati 6.5 1 0.0 0 0 \n",
"HOUMADI ABDALLAH Abdallah 13.0 1 3.0 3 3 \n",
"IBRAHIM Laoura 4.5 1 0.0 0 0 \n",
"MALIDE ABDOU Nasser 12.0 1 2.5 3 2 \n",
"MALIDE Younes 19.5 1 3.0 3 3 \n",
"MOENY MOKO Nadjma 7.5 1 2.5 3 2 \n",
"MOUGNIDAHO Nouriana 13.0 1 2.5 3 2 \n",
"MOURTADJOU El-Fazar 20.0 1 3.0 3 3 \n",
"SAID Chamsoudine 13.0 1 3.0 3 3 \n",
"YANCOUB Toufa 13.5 1 2.5 3 2 \n",
"YOUSSOUF Asma 10.5 1 0.0 0 NaN \n",
"\n",
" Exercice 2 1 (Division) 2.a (Division) \\\n",
"ABDOU Mariam 4.666667 2 2 \n",
"ABTOIHI SAID Yasmina 3.666667 0 1 \n",
"AHAMED Anssuifidine 2.000000 0 NaN \n",
"AHAMED Issihaka 5.666667 1 3 \n",
"AHMED ABDOU El-Karim 1.000000 0 0 \n",
"ANDILI Chayhati 6.000000 3 3 \n",
"ANDJILANE Rachma 1.000000 0 0 \n",
"ANLI Koudoussia 5.000000 1 2 \n",
"ATTOUMANI Hanissa 4.666667 1 3 \n",
"BACO ABDALLAH Moustadirane 3.666667 0 1 \n",
"BINALI Maoulida 4.000000 3 3 \n",
"BOINA Ainati 3.000000 0 0 \n",
"BOINA HASSANI Nahimi 1.000000 0 0 \n",
"DAOUD El-Farouk 2.000000 0 0 \n",
"DJADAR Ifrah 3.666667 0 1 \n",
"HALIBOU Nafilati 3.000000 0 0 \n",
"HALIDI Tomsoyère 0.000000 NaN NaN \n",
"HOUMADI Himida 0.000000 0 0 \n",
"HOUMADI Antufati 2.666667 0 1 \n",
"HOUMADI ABDALLAH Abdallah 3.666667 2 2 \n",
"IBRAHIM Laoura 2.000000 0 0 \n",
"MALIDE ABDOU Nasser 3.000000 0 0 \n",
"MALIDE Younes 7.000000 3 3 \n",
"MOENY MOKO Nadjma 2.666667 0 1 \n",
"MOUGNIDAHO Nouriana 3.000000 0 0 \n",
"MOURTADJOU El-Fazar 7.000000 3 3 \n",
"SAID Chamsoudine 4.000000 NaN 3 \n",
"YANCOUB Toufa 6.000000 3 3 \n",
"YOUSSOUF Asma 4.000000 3 3 \n",
"\n",
" 2.b (PGCD) Exercice 3 1 (Vrai Faux) 2 (Proba) \\\n",
"ABDOU Mariam 2 5.500000 3 3 \n",
"ABTOIHI SAID Yasmina 3 3.833333 1 3 \n",
"AHAMED Anssuifidine 2 1.000000 2 NaN \n",
"AHAMED Issihaka 3 3.166667 1 3 \n",
"AHMED ABDOU El-Karim 1 1.500000 3 0 \n",
"ANDILI Chayhati 2 4.833333 3 3 \n",
"ANDJILANE Rachma 1 3.166667 1 3 \n",
"ANLI Koudoussia 3 4.833333 3 2 \n",
"ATTOUMANI Hanissa 2 3.000000 2 3 \n",
"BACO ABDALLAH Moustadirane 3 5.000000 2 3 \n",
"BINALI Maoulida 0 5.500000 3 3 \n",
"BOINA Ainati 3 5.500000 3 3 \n",
"BOINA HASSANI Nahimi 1 0.500000 1 NaN \n",
"DAOUD El-Farouk 2 4.166667 3 3 \n",
"DJADAR Ifrah 3 4.833333 3 3 \n",
"HALIBOU Nafilati 3 4.500000 1 3 \n",
"HALIDI Tomsoyère NaN 0.000000 NaN NaN \n",
"HOUMADI Himida 0 1.666667 2 1 \n",
"HOUMADI Antufati 2 2.833333 3 1 \n",
"HOUMADI ABDALLAH Abdallah 1 5.000000 2 3 \n",
"IBRAHIM Laoura 2 0.500000 1 0 \n",
"MALIDE ABDOU Nasser 3 4.166667 3 3 \n",
"MALIDE Younes 3 4.500000 1 3 \n",
"MOENY MOKO Nadjma 2 1.500000 3 0 \n",
"MOUGNIDAHO Nouriana 3 5.500000 3 3 \n",
"MOURTADJOU El-Fazar 3 5.500000 3 3 \n",
"SAID Chamsoudine 2 4.833333 3 2 \n",
"YANCOUB Toufa 2 2.500000 1 3 \n",
"YOUSSOUF Asma NaN 5.500000 3 3 \n",
"\n",
" 3 (Proba) Exercice 4 1 (Modélisation) \\\n",
"ABDOU Mariam 3 4.000000 3 \n",
"ABTOIHI SAID Yasmina 2 0.000000 0 \n",
"AHAMED Anssuifidine NaN 0.000000 0 \n",
"AHAMED Issihaka 1 2.333333 2 \n",
"AHMED ABDOU El-Karim NaN 0.000000 NaN \n",
"ANDILI Chayhati 2 0.000000 NaN \n",
"ANDJILANE Rachma 1 0.000000 NaN \n",
"ANLI Koudoussia 3 1.500000 NaN \n",
"ATTOUMANI Hanissa 0 0.833333 1 \n",
"BACO ABDALLAH Moustadirane 3 0.500000 0 \n",
"BINALI Maoulida 3 0.000000 0 \n",
"BOINA Ainati 3 0.000000 0 \n",
"BOINA HASSANI Nahimi NaN 0.000000 0 \n",
"DAOUD El-Farouk 1 1.833333 2 \n",
"DJADAR Ifrah 2 0.000000 NaN \n",
"HALIBOU Nafilati 3 0.000000 0 \n",
"HALIDI Tomsoyère NaN 0.000000 NaN \n",
"HOUMADI Himida 0 0.333333 0 \n",
"HOUMADI Antufati 1 0.000000 0 \n",
"HOUMADI ABDALLAH Abdallah 3 0.500000 1 \n",
"IBRAHIM Laoura 0 1.000000 1 \n",
"MALIDE ABDOU Nasser 1 1.500000 2 \n",
"MALIDE Younes 3 4.000000 3 \n",
"MOENY MOKO Nadjma 0 0.000000 0 \n",
"MOUGNIDAHO Nouriana 3 1.000000 1 \n",
"MOURTADJOU El-Fazar 3 3.500000 3 \n",
"SAID Chamsoudine 3 0.000000 0 \n",
"YANCOUB Toufa 0 1.666667 1 \n",
"YOUSSOUF Asma 3 0.000000 0 \n",
"\n",
" 1 (Explication) 2 (Vérification) bonus ! \n",
"ABDOU Mariam 3 3 \n",
"ABTOIHI SAID Yasmina 0 NaN \n",
"AHAMED Anssuifidine 0 NaN \n",
"AHAMED Issihaka 2 1 \n",
"AHMED ABDOU El-Karim NaN NaN \n",
"ANDILI Chayhati NaN NaN \n",
"ANDJILANE Rachma NaN NaN \n",
"ANLI Koudoussia 1 3 \n",
"ATTOUMANI Hanissa NaN 1 \n",
"BACO ABDALLAH Moustadirane 1 NaN \n",
"BINALI Maoulida 0 NaN \n",
"BOINA Ainati 0 NaN \n",
"BOINA HASSANI Nahimi 0 NaN \n",
"DAOUD El-Farouk 1 1 \n",
"DJADAR Ifrah NaN NaN \n",
"HALIBOU Nafilati 0 NaN \n",
"HALIDI Tomsoyère NaN NaN \n",
"HOUMADI Himida 0 1 \n",
"HOUMADI Antufati 0 NaN \n",
"HOUMADI ABDALLAH Abdallah 0 NaN \n",
"IBRAHIM Laoura 1 NaN \n",
"MALIDE ABDOU Nasser 1 NaN \n",
"MALIDE Younes 3 3 \n",
"MOENY MOKO Nadjma 0 NaN \n",
"MOUGNIDAHO Nouriana 1 NaN \n",
"MOURTADJOU El-Fazar 2 3 \n",
"SAID Chamsoudine 0 NaN \n",
"YANCOUB Toufa 1 2 \n",
"YOUSSOUF Asma 0 NaN "
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"barem = notes[:1]\n",
"notes = notes[1:]\n",
"notes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Supression des notes inutiles "
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes[notes[ds_name].notnull()]\n",
"#notes = notes[notes[ds_name] != 'abs']"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes.astype(float)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Traitement des notes"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"Index([ 'DS_15_09_25', 'Presentation',\n",
" 'Exercice 1', 1,\n",
" 2, 'Exercice 2',\n",
" '1 (Division)', '2.a (Division)',\n",
" '2.b (PGCD)', 'Exercice 3',\n",
" '1 (Vrai Faux)', '2 (Proba)',\n",
" '3 (Proba)', 'Exercice 4',\n",
" '1 (Modélisation)', '1 (Explication)',\n",
" '2 (Vérification) bonus !'],\n",
" dtype='object')"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.T.index"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"list_exo = [\"Exercice 1\", \"Exercice 2\", \"Exercice 3\",\"Exercice 4\"]"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[list_exo] = notes[list_exo].applymap(lambda x:round(x,2))\n",
"#notes[list_exo]"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"[1,\n",
" 2,\n",
" '1 (Division)',\n",
" '2.a (Division)',\n",
" '2.b (PGCD)',\n",
" '1 (Vrai Faux)',\n",
" '2 (Proba)',\n",
" '3 (Proba)',\n",
" '1 (Modélisation)',\n",
" '1 (Explication)',\n",
" '2 (Vérification) bonus\\xa0!']"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"item_avec_note = list_exo + [ds_name, \"Presentation\"]\n",
"sous_exo = [i for i in notes.T.index if i not in item_avec_note]\n",
"sous_exo"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def toRepVal(val):\n",
" if pd.isnull(val):\n",
" return \"\\\\NoRep\"\n",
" elif val == 0:\n",
" return \"\\\\RepZ\"\n",
" elif val == 1:\n",
" return \"\\\\RepU\"\n",
" elif val == 2:\n",
" return \"\\\\RepD\"\n",
" elif val == 3:\n",
" return \"\\\\RepT\"\n",
" else:\n",
" return val"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[item_avec_note] = notes[item_avec_note].fillna(\".\")\n",
"#notes"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"eleves = notes.copy()\n",
"eleves[sous_exo] = notes[sous_exo].applymap(toRepVal)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"17"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(notes.T.index)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preparation du fichier .tex"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"bilan = texenv.get_template(\"tpl_bilan.tex\")\n",
"with open(\"./bilan313.tex\",\"w\") as f:\n",
" f.write(bilan.render(eleves = eleves, barem = barem, ds_name = ds_name, latex_info = latex_info, nbr_questions = len(barem.T)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Un peu de statistiques"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 28.000000\n",
"mean 10.517857\n",
"std 4.637772\n",
"min 0.000000\n",
"25% 7.375000\n",
"50% 12.000000\n",
"75% 13.125000\n",
"max 20.000000\n",
"Name: DS_15_09_25, dtype: float64"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes[ds_name].describe()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa88a797ac8>"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEW1JREFUeJzt3W2MXOV5xvHrwnboC4lWgOpSbGvbAm1BkdaNZIxoYKy+\nyHZVp5VQC1KULJWKFdVKRL+kjaKSD1H7iYrSEHAFxE5bhaCgOk5kGlC04yJVMnmxeatpsRpLNgTT\nBkwAKxImdz/MsXc8npcz3ufsOfPM/yetPM+cZ8559t6z9x5fO8d2RAgAkIeL6l4AACAdmjoAZISm\nDgAZoakDQEZo6gCQEZo6AGRkaFO3/TO2D9g+ZPt5258bMO9e2y/Zfsb2+kpWCgAYaWhTj4ifSNoU\nEXOS5iRttn199xzbWyVdFRFXS7pD0v1VLRYAMNzI+CUiThUP3ydplaSf9kzZJml3MfeApBnbq1Mu\nEgBQzsimbvsi24cknZD0RER8p2fKlZKOdY2PS1qTbokAgLLKXKn/tIhf1ki63vZ1faa592UpFgcA\nGM/KshMj4k3bC5I2S3qha9PLktZ2jdcUz53DNo0eAC5ARPReOA806t0vl9ueKR7/rKTflXS4Z9pe\nSR8r5myUdDIiTgxYGB+JPu66667a15DLR1NqWXyXDPkY/j00+vVLP8Yk1TOXj3GNulK/QtJu2yvU\n+QHw1YjYZ3t78cXfWYy32j4i6R1Jt4+9Cozt6NGjdS8hG9QyLepZr6FNPSKek/SbfZ7f2TPekXhd\nAIALwB2lE2p+fr7uJWSDWqZFPevlC8lsLuhAdizXsYBJZFvD3zjmoRnr6Nd39rGUY2D52Vak+kUp\nmqvdbte9hGxQy7SoZ71o6gCQEeIXoCGIX9AP8QsATDGa+oQit0yHWqZFPetFUweAjJCpAw1Bpo5+\nyNQBYIrR1CcUuWU61DIt6lkvmjoAZIRMHWgIMnX0Q6YOAFOMpj6hyC3ToZZpUc960dQBICNk6kBD\nkKmjHzJ1AJhiNPUJRW6ZDrVMi3rWi6YOABkhUwcagkwd/ZCpA8AUo6lPKHLLdKhlWtSzXjR1AMgI\nmTrQEGTq6IdMHQCmGE19QpFbpkMt06Ke9aKpA0BGhmbqttdK+rKkX1AniPvHiLi3Z05L0tcl/U/x\n1GMR8fk++yJTB4YgU0c/42bqK0dsf1fSnRFxyPYlkr5n+8mIONwzb39EbBt3sQCAtIbGLxHxakQc\nKh6/LemwpF/qM7X0TxGkQW6ZDrVMi3rWq3SmbntW0npJB3o2haQbbB+yvc/2temWBwAYR6n3qRfR\nS1vS5yNiT8+290t6LyJO2d4i6e8j4po++yBTB4YgU0c/qTN12V4l6TFJ/9zb0CUpIt7qevy47S/a\nvjQiXu+dOz8/r9nZWUnSzMyM5ubm1Gq1JC3+lY0x42keLzozbvWMleT1F7p/xtWP2+22du3aJUln\n++U4Rr37xZJ2S/pRRNw5YM5qSa9FRNjeIOnRiDhvJVypp9Vut8+eEFiaptQylyv1ptQzF6mv1G+U\n9FFJz9o+WDz3GUnrJCkidkq6RdInbJ+WdErSrWOvGgCQBP/2C9AQuVypIy3+7RcAmGI09Ql1/i/G\ncKGoZVrUs140dQDICJk60BBk6uiHTB0AphhNfUKRW6ZDLdOinvWiqQNARsjUgYYgU0c/ZOoAMMVo\n6hOK3DIdapkW9awXTR0AMkKmDjQEmTr6IVMHgClGU59Q5JbpUMu0qGe9aOoAkBEydaAhyNTRD5k6\nAEwxmvqEIrdMh1qmRT3rRVMHgIyQqQMNQaaOfsjUAWCK0dQnFLllOtQyLepZL5o6AGSETB1oCDJ1\n9EOmDgBTjKY+ocgt06GWaVHPetHUASAjZOpAQ5Cpox8ydQCYYkObuu21thdsv2D7edufHDDvXtsv\n2X7G9vpqlopu5JbpUMu0qGe9Vo7Y/q6kOyPikO1LJH3P9pMRcfjMBNtbJV0VEVfbvl7S/ZI2Vrdk\nAMAgY2XqtvdI+oeI+HbXcw9IWoiIrxbjFyXdHBEnel5Lpg4MQaaOfirL1G3PSlov6UDPpislHesa\nH5e0pux+AQDpjIpfJElF9PI1SZ+KiLf7TekZ9/1RPz8/r9nZWUnSzMyM5ubm1Gq1JC3mcIxbxRXX\naAsLC41Y76SPuzPgQfPLfE1SfD0WnRm3zhmXPTcGvb7s9qrrybgz3rRpk1IbGb/YXiXpm5Iej4h7\n+mx/QFI7Ih4pxsQvS1T2r9HUM412u332m22QpUYjZZQ5xtK2l9vHUj+PMvVExxjf66Xjl6FN3Z0j\n7pb0o4i4c8CcrZJ2RMRW2xsl3RMR5/2ilKZeHk29eWjqqEIVTX1U/HKjpI9Ketb2weK5z0haJ0kR\nsTMi9tneavuIpHck3V724ACAtLijtIG4Ul9exC/nbid+WT5VXKlzRykAZIQr9QbiSr15uFJHFbhS\nBwAMRVPH1Dv/PeJYCupZL5o6AGSETL2ByNSbh0wdVSBTBwAMRVPH1CMDTot61oumDgAZIVNvIDL1\n5iFTRxXI1AEAQ9HUMfXIgNOinvWiqQNARsjUG4hMvXnI1FEFMnUAwFA0dUw9MuC0qGe9aOoAkBEy\n9QYiU28eMnVUgUwdADAUTR1Tjww4LepZL5o6AGSETL2ByNSbh0wdVSBTBwAMRVPH1CMDTot61oum\nDgAZIVNvIDL15iFTRxXI1AEAQ9HUMfXIgNOinvUa2dRtP2z7hO3nBmxv2X7T9sHi47PplwkAKGNk\npm77w5LelvTliPhgn+0tSX8REdtG7IdMvSQy9eYhU0cVasnUI+IpSW+MPCoAoHYpMvWQdIPtQ7b3\n2b42wT6BZUMGnBb1rNfKBPv4vqR1EXHK9hZJeyRd02/i/Py8ZmdnJUkzMzOam5tTq9WStHgiMO6M\npXbx56Bx5zVNWW/u4462qv56nHus7v0v7/a66z0t40Vnxq3i8a5iPKtxlXqfuu1ZSd/ol6n3mfsD\nSR+KiNd7nidTL4lMvXnI1FGFRr5P3fZqd1Ym2xvU+UHx+oiXAQAqUOYtjV+R9B+Sfs32Mdt/anu7\n7e3FlFskPWf7kKR7JN1a3XKB9M7/qzCWgnrWa2SmHhG3jdh+n6T7kq0IAHDB+LdfGohMvXnI1FGF\nRmbqAIDmoKlj6pEBp0U960VTB4CMkKk3EJl685Cpowpk6gCAoWjqmHpkwGlRz3rR1AEgI2TqDUSm\n3jxk6qgCmToAYCiaOqYeGXBa1LNeNHUAyAiZegORqTcPmTqqQKYOABiKpo6pRwacFvWsF00dADJC\npt5AZOrNQ6aOKpCpAwCGoqlj6pEBp0U960VTB4CMkKk3EJl685Cpowpk6gCAoWjqmHpkwGlRz3rR\n1AEgI2TqDUSm3jxk6qgCmToAYCiaOqYeGXBa1LNeNHUAyMjITN32w5J+X9JrEfHBAXPulbRF0ilJ\n8xFxsM8cMvWSyNSbh0wdVagrU/+SpM1DFrVV0lURcbWkOyTdX/bgAIC0Rjb1iHhK0htDpmyTtLuY\ne0DSjO3VaZYHVI8MOC3qWa+VCfZxpaRjXePjktZIOtE78ZVXXhm4k4svvliXXXZZguUAwPRK0dSl\nTlDXrW9ItG7dr8ruHNK2LrpolVasuFjvvfcTXXfdr+vuu/9GrVZL0uJP+6aNN23a1O9TO0dELPl4\nUrv4c9D4TB432MLCwpI+3zKfaxMstd7lP8+2hn092u32ks+vc4/Vvf/l2z7qvJI655Z04fUc9vpp\nGi86M24Vj3cV41mNq9TNR7ZnJX2j3y9KbT8gqR0RjxTjFyXdHBEneubF4F8I7NVNNz2o/fv3jrn8\n5deMX5h1jlP/OpbnF3f1f55NWUcT6t2ZM+xzXY7vkVw09eajvZI+Jkm2N0o62dvQAQDLY2T8Yvsr\nkm6WdLntY5LukrRKkiJiZ0Tss73V9hFJ70i6vcoFAwAGG9nUI+K2EnN2pFkOAGApuKMUADJCUweA\njNDUASAjNHUAyAhNHQAyQlMHgIzQ1AEgIzR1AMgITR0AMkJTB4CM0NQBICM0dQDICE0dADJCUweA\njNDUASAjNHUAyAhNHQAyQlMHgIzQ1AEgIzR1AMgITR0AMkJTB4CM0NQBICM0dQDICE0dADJCUweA\njNDUASAjNHUAyMjIpm57s+0Xbb9k+9N9trdsv2n7YPHx2WqWCgAYZeWwjbZXSPqCpN+R9LKk79je\nGxGHe6buj4htFa0RAFDSqCv1DZKORMTRiHhX0iOSPtJnnpOvDAAwtlFN/UpJx7rGx4vnuoWkG2wf\nsr3P9rUpFwgAKG9o/KJOwx7l+5LWRcQp21sk7ZF0zZJXBgAY26im/rKktV3jtepcrZ8VEW91PX7c\n9hdtXxoRr5+/u3lJs8XjGUlzklqSpJMn/0/tdlutVmfcbrclqXHjRWfGrZ6xkhxv8P7PjM88N3h7\ninqee6x+62nGduq9XNs746XWsynfz3WPF50Zt4rHu4rxrMbliMEX47ZXSvovSb8t6RVJT0u6rfsX\npbZXS3otIsL2BkmPRsR5K7Edgy/89+qmmx7U/v17x/4ElpttDf8LjDWspmmO0TlO/etY6vYU+6De\n5ben28eIvjHyGEutVS7KnnsRUfr3lkOv1CPitO0dkr4laYWkhyLisO3txfadkm6R9AnbpyWdknRr\n2YMDANIaFb8oIh6X9HjPczu7Ht8n6b70SwMAjIs7SgEgIzR1AMgITR0AMkJTB4CM0NQBICM0dQDI\nCE0dADJCUweAjNDUASAjNHUAyAhNHQAyQlMHgIzQ1AEgIzR1AMgITR0AMkJTB4CM0NQBICM0dQDI\nCE0dADJCUweAjNDUASAjNHUAyAhNHQAyQlMHgIzQ1AEgIzR1AMgITR0AMkJTB4CMjGzqtjfbftH2\nS7Y/PWDOvcX2Z2yvT79MAEAZQ5u67RWSviBps6RrJd1m+zd65myVdFVEXC3pDkn3V7RWAMAIo67U\nN0g6EhFHI+JdSY9I+kjPnG2SdktSRByQNGN7dfKVAgBGGtXUr5R0rGt8vHhu1Jw1S18aAGBcK0ds\nj5L7cZnXfeADf9D3xadPv6oVK64oeSgAwCCjmvrLktZ2jdeqcyU+bM6a4rnz/PjH3xx4oIUFye79\n2dBUw9eZ5vMos48mrGOp25e+D+o9zvY0+xj9uS5HrXKRthajmvp3JV1te1bSK5L+RNJtPXP2Stoh\n6RHbGyWdjIgTvTuKCL6KAFCxoU09Ik7b3iHpW5JWSHooIg7b3l5s3xkR+2xvtX1E0juSbq981QCA\nvhxRNjYHADRd5XeUlrl5CeXZPmr7WdsHbT9d93omje2HbZ+w/VzXc5faftL2f9t+wvZMnWucJAPq\n+Tnbx4tz9KDtzXWucVLYXmt7wfYLtp+3/cni+bHOz0qbepmblzC2kNSKiPURsaHuxUygL6lzPnb7\nS0lPRsQ1kr5djFFOv3qGpL8rztH1EfFvNaxrEr0r6c6IuE7SRkl/XvTLsc7Pqq/Uy9y8hPHxS+cL\nFBFPSXqj5+mzN9AVf/7hsi5qgg2op8Q5OraIeDUiDhWP35Z0WJ37gMY6P6tu6mVuXsJ4QtITtr9r\n+8/qXkwmVne9Y+uEJO6IXrodxb8F9RBx1viKdxyul3RAY56fVTd1fgub3o0R8SFJW9T569mH615Q\nTqLzzgHO26W5X9KvSJqT9ENJd9e7nMli+xJJj0n6VES81b2tzPlZdVMvc/MSxhARPyz+/F9J/6pO\nxIWlOWH7FyXJ9hWSXqt5PRMtIl6LgqQHxTlamu1V6jT0f4qIPcXTY52fVTf1szcv2X6fOjcv7a34\nmNmy/XO23188/nlJvyfpueGvQgl7JX28ePxxSXuGzMUIReM544/EOVqKO7fZPiTpPyPinq5NY52f\nlb9P3fYWSfdo8ealv630gBmz/cvqXJ1LnRvH/oV6jsf2VyTdLOlydfLJv5b0dUmPSlon6aikP46I\nk3WtcZL0qeddklrqRC8h6QeStve7yxznsv1bkv5d0rNajFj+StLTGuP85OYjAMgI/50dAGSEpg4A\nGaGpA0BGaOoAkBGaOgBkhKYOABmhqQNARmjqAJCR/wf112yIH8O2rgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fa88a8950f0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"notes_seules = notes[ds_name]\n",
"notes_seules.hist(bins = (notes_seules.max() - notes_seules.min())*2)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes_questions = notes[sous_exo]\n",
"notes_analysis = notes_questions.describe()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>1 (Division)</th>\n",
" <th>2.a (Division)</th>\n",
" <th>2.b (PGCD)</th>\n",
" <th>1 (Vrai Faux)</th>\n",
" <th>2 (Proba)</th>\n",
" <th>3 (Proba)</th>\n",
" <th>1 (Modélisation)</th>\n",
" <th>1 (Explication)</th>\n",
" <th>2 (Vérification) bonus !</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>25</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 1 2 1 (Division) 2.a (Division) 2.b (PGCD) 1 (Vrai Faux) \\\n",
"count NaN NaN NaN NaN NaN NaN \n",
"\n",
" 2 (Proba) 3 (Proba) 1 (Modélisation) 1 (Explication) \\\n",
"count 25 NaN NaN NaN \n",
"\n",
" 2 (Vérification) bonus ! \n",
"count NaN "
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# J'aimerai récupérer le nom des questions qui ont été le moins répondus\n",
"notes_analysis[:1][notes_analysis[:1] == 25]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}