2015-2016/3e/Expression_litterale/Evaluer_egalite/QCM.tex

112 lines
4.2 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[a4paper,10pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/tools/style/classExo}
\usepackage{/media/documents/Cours/Prof/Enseignements/2015_2016}
% Title Page
\titre{Évaluer et égalité - Exercices}
% \seconde \premiereS \PSTMG \TSTMG
\classe{Troisième}
\date{Octobre 2015}
\begin{document}
\begin{Exo}
Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses proposées est exacte. Sur la copie, indiquer le numéro de la question et recopier, sans justifier, la réponse choisie. Aucun point ne sera enlevé en cas de mauvaise réponse :
\begin{center}
\begin{tabular}{|c|p{5cm}|*{2}{p{2cm}|}p{2.5cm}|}
\hline
1 & Si $x = 3$ alors $2x(3x + 1)$ est égal à & $9x$ & $3$ & 60\\
\hline
2 & Si $x = -2$ alors $(6x^2 + 1) - 4$ est égal à & $-2$ & $21$ & $0$\\
\hline
3 & Si $a = -10$ alors $4x^2 + 9x - 10$ est égal à & $3$ & $300$ & $-10x^2$\\
\hline
4 & À quelle expression $(x-3)(6x+1)$ est-elle égale? & $3$ & $6x^2 - 3$ & $6x^2-17x-3$ \\
\hline
5 & À quelle expression $(2x+4)(2x+4)$ est-elle égale? & $(2x+4)^2$ & $2x+4$ & $4x^2 + 16x$ \\
\hline
6 & $9-49x^2$ est égale à : & $-40x$ & $(3-7x)^2$ & $(3-7x)(3+7x)$\\
\hline
\end{tabular}
\end{center}
\end{Exo}
\begin{Exo}
Cet exercice est un QCM (questionnaire à choix multiples).
Pour chaque ligne du tableau, une seule affirmation est juste.
Sur votre copie, indiquer le numéro de la question et recopier laffirmation juste.
On ne demande pas de justifier.
\begin{center}
\begin{tabular}{|c|p{5cm}|*{3}{p{2cm}|}}
\hline
& & A & B & C \\
\hline
1 & $(x-1)^2$ est égale à & $(x-1)(x+1)$ & $x^2 - 2x + 1$ & $x^2 + 2x + 1$ \\
\hline
2 & $3x^2 + 10x - 5x^2 + 4$ est égale à & $12x$ & $12x^2 + 4$ & $-2x^2 + 10x + 4$ \\
\hline
3 & $-6x + 3x^2 + 10x - 5x^2 -4x$ est égale à & $-2x^2$ & $-2x$ & $-2$ \\
\hline
\end{tabular}
\end{center}
\end{Exo}
\pagebreak
\setcounter{exo}{0}
\begin{Exo}
Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses proposées est exacte. Sur la copie, indiquer le numéro de la question et recopier, sans justifier, la réponse choisie. Aucun point ne sera enlevé en cas de mauvaise réponse :
\begin{center}
\begin{tabular}{|c|p{5cm}|*{2}{p{2cm}|}p{2.5cm}|}
\hline
1 & Si $x = 3$ alors $2x(3x + 1)$ est égal à & $9x$ & $3$ & 60\\
\hline
2 & Si $x = -2$ alors $(6x^2 + 1) - 4$ est égal à & $-2$ & $21$ & $0$\\
\hline
3 & Si $a = -10$ alors $4x^2 + 9x - 10$ est égal à & $3$ & $300$ & $-10x^2$\\
\hline
4 & À quelle expression $(x-3)(6x+1)$ est-elle égale? & $3$ & $6x^2 - 3$ & $6x^2-17x-3$ \\
\hline
5 & À quelle expression $(2x+4)(2x+4)$ est-elle égale? & $(2x+4)^2$ & $2x+4$ & $4x^2 + 16x$ \\
\hline
6 & $9-49x^2$ est égale à : & $-40x$ & $(3-7x)^2$ & $(3-7x)(3+7x)$\\
\hline
\end{tabular}
\end{center}
\end{Exo}
\begin{Exo}
Cet exercice est un QCM (questionnaire à choix multiples).
Pour chaque ligne du tableau, une seule affirmation est juste.
Sur votre copie, indiquer le numéro de la question et recopier laffirmation juste.
On ne demande pas de justifier.
\begin{center}
\begin{tabular}{|c|p{5cm}|*{3}{p{2cm}|}}
\hline
& & A & B & C \\
\hline
1 & $(x-1)^2$ est égale à & $(x-1)(x+1)$ & $x^2 - 2x + 1$ & $x^2 + 2x + 1$ \\
\hline
2 & $3x^2 + 10x - 5x^2 + 4$ est égale à & $12x$ & $12x^2 + 4$ & $-2x^2 + 10x + 4$ \\
\hline
3 & $-6x + 3x^2 + 10x - 5x^2 -4x$ est égale à & $-2x^2$ & $-2x$ & $-2$ \\
\hline
\end{tabular}
\end{center}
\end{Exo}
\pagebreak
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: