\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/2016-2017/tools/style/classExo} \usepackage{/media/documents/Cours/Prof/Enseignements/2016-2017/theme} %\geometry{left=10mm,right=10mm, top=10mm, bottom=10mm} % Title Page \titre{Technique: calcul et évaluation} % \seconde \premiereS \PSTMG \TSTMG \classe{Troisième} \date{Septembre 2016} %\duree{1 heure} \sujet{01} % DS DSCorr DM DMCorr Corr %\printanswers \pagestyle{empty} \newcommand{\lesexos}{% \begin{Exo} Faire les calculs suivants en détaillant des étapes. \begin{multicols}{3} \begin{enumerate} \item $A = -2 - 2 \times ( -3 )$ \begin{solution} \begin{eqnarray*} A & = & -2 - 2 \times ( -3 ) \\ A & = & -2 + 6 \\ A & = & 4 \end{eqnarray*} \end{solution} \item $B = 1 - ( -4 \times 3 )$ \begin{solution} \begin{eqnarray*} A & = & 1 - ( -4 \times 3 ) \\ A & = & 1 - ( -12 ) \\ A & = & 13 \end{eqnarray*} \end{solution} \item $C = -10 \times ( -7 ) - 8 \times ( -3 )$ \begin{solution} \begin{eqnarray*} A & = & -10 \times ( -7 ) - 8 \times ( -3 ) \\ A & = & 70 + 24 \\ A & = & 94 \end{eqnarray*} \end{solution} \columnbreak \item $D = ( 2 - 8 ) \times 7 - 2$ \begin{solution} \begin{eqnarray*} A & = & ( 2 - 8 ) \times 7 - 2 \\ A & = & -6 \times 7 - 2 \\ A & = & -42 - 2 \\ A & = & -44 \end{eqnarray*} \end{solution} \item $E = 8 ( 9 - 10 ) \times ( -2 )$ \begin{solution} \begin{eqnarray*} A & = & 8 ( 9 - 10 ) \times ( -2 ) \\ A & = & 8 \times ( -1 ) \times ( -2 ) \\ A & = & -8 \times ( -2 ) \\ A & = & 16 \end{eqnarray*} \end{solution} \item $F = ( -10 - 2 ) ( 10 - 6 )$ \begin{solution} \begin{eqnarray*} F & = & ( -10 - 2 ) ( 10 - 6 ) \\ F & = & -12 \times 4 \\ F & = & -48 \end{eqnarray*} \end{solution} \columnbreak \item $G = 5 ( -3 - 8 ) + 3$ \begin{solution} \begin{eqnarray*} G & = & 5 ( -3 - 8 ) + 3 \\ G & = & 5 \times ( -11 ) + 3 \\ G & = & -55 + 3 \\ G & = & -52 \end{eqnarray*} \end{solution} \item $H = 1 - ( -2 - 8 ) \times ( -6 )$ \begin{solution} \begin{eqnarray*} H & = & 1 - ( -2 - 8 ) \times ( -6 ) \\ H & = & 1 - ( -10 \times ( -6 ) ) \\ H & = & 1 - 60 \\ H & = & -59 \end{eqnarray*} \end{solution} \item $I = 5 ( 10 - ( -8 \times 3 ) )$ \begin{solution} \begin{eqnarray*} I & = & 5 ( 10 - ( -8 \times 3 ) ) \\ I & = & 5 ( 10 - ( -24 ) ) \\ I & = & 5 \times 34 \\ I & = & 170 \end{eqnarray*} \end{solution} \end{enumerate} \end{multicols} \end{Exo} \begin{Exo} Évaluer les expressions suivantes \begin{multicols}{3} \begin{enumerate} \item $10 x - 7$ en $x = 3$ \begin{solution} \begin{eqnarray*} A & = & 10 \times 3 - 7 \\ A & = & 30 - 7 \\ A & = & 23 \end{eqnarray*} \end{solution} \item $-3 x - 8$ en $x = -5$ \begin{solution} \begin{eqnarray*} A & = & -3 \times ( -5 ) - 8 \\ A & = & 15 - 8 \\ A & = & 7 \end{eqnarray*} \end{solution} \item $-3 x - 8$ en $x = 2$ \begin{solution} \begin{eqnarray*} A & = & -3 \times 2 - 8 \\ A & = & -6 - 8 \\ A & = & -14 \end{eqnarray*} \end{solution} \item $2 x^{ 2 } + 2 x - 4$ en $x = 4$ \begin{solution} \begin{eqnarray*} A & = & 2 \times 4^{ 2 } + 2 \times 4 - 4 \\ A & = & 2 \times 16 + 8 - 4 \\ A & = & 32 + 8 - 4 \\ A & = & 40 - 4 \\ A & = & 36 \end{eqnarray*} \end{solution} \item $2 x^{ 2 } + 2 x - 4$ en $x = 4$ \begin{solution} \begin{eqnarray*} A & = & 2 \times 4^{ 2 } + 2 \times 4 - 4 \\ A & = & 2 \times 16 + 8 - 4 \\ A & = & 32 + 8 - 4 \\ A & = & 40 - 4 \\ A & = & 36 \end{eqnarray*} \end{solution} \item $-8 x^{ 2 } + 9 x + 8$ en $x = -7$ \begin{solution} \begin{eqnarray*} A & = & -8 \times ( -7 )^{ 2 } + 9 \times ( -7 ) + 8 \\ A & = & -8 \times 49 - 63 + 8 \\ A & = & -392 - 63 + 8 \\ A & = & -455 + 8 \\ A & = & -447 \end{eqnarray*} \end{solution} \item $-3 x ( x - ( -7 ) )$ en $x = 8$ \item $-3 x ( x - ( -7 ) )$ en $x = -10$ \item $( -4 x + 5 ) ( -4 - 10 x )$ en $x = 1$ \end{enumerate} \end{multicols} \end{Exo} } \begin{document} \lesexos \setcounter{exo}{0} \vfill \lesexos \setcounter{exo}{0} \vfill \lesexos \setcounter{exo}{0} \vfill \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: "master" %%% End: