1085 lines
388 KiB
Plaintext
1085 lines
388 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pandas as pd\n",
|
||
|
"import numpy as np\n",
|
||
|
"from math import ceil\n",
|
||
|
"import seaborn as sns\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"%matplotlib inline\n",
|
||
|
"from pprint import pprint"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Analyse des résultats du DNB blanc 1"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"gene = [str(i) for i in range(301, 305)] + [str(i) for i in range(309, 312)]\n",
|
||
|
"pro = [str(i) for i in range(305, 309)] + [\"312\"]\n",
|
||
|
"coeff = {\n",
|
||
|
" \"Français\": 100,\n",
|
||
|
" \"HG\": 50,\n",
|
||
|
" \"Maths\": 100,\n",
|
||
|
" \"SVT\": 25,\n",
|
||
|
" \"Physique\": 25,\n",
|
||
|
" \"Techno\": 25\n",
|
||
|
"}\n",
|
||
|
"matieres = list(coeff.keys())\n",
|
||
|
"norm_matieres = [\"_\"+m for m in matieres]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"sheets_gene = pd.read_excel(\"./DNB blanc 1.xls\",\n",
|
||
|
" sheetname=gene,\n",
|
||
|
" skiprows=[0],\n",
|
||
|
" parse_cols=\"B,C,E,G,I,K,M\",\n",
|
||
|
" )\n",
|
||
|
"sheets_pro = pd.read_excel(\"./DNB blanc 1.xls\",\n",
|
||
|
" sheetname=pro,\n",
|
||
|
" header=1,\n",
|
||
|
" parse_cols=\"B,C,E,G,I,K,M\",\n",
|
||
|
" )"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def orderedDict2df(sheets):\n",
|
||
|
" dfs = []\n",
|
||
|
" for tribe, df in sheets.items():\n",
|
||
|
" df['classe'] = tribe\n",
|
||
|
" dfs.append(df)\n",
|
||
|
" return pd.concat(dfs)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"gene_df = orderedDict2df(sheets_gene)\n",
|
||
|
"pro_df = orderedDict2df(sheets_pro)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style>\n",
|
||
|
" .dataframe thead tr:only-child th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: left;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Unnamed: 0</th>\n",
|
||
|
" <th>Français: /100</th>\n",
|
||
|
" <th>HG: /50</th>\n",
|
||
|
" <th>Maths: /100</th>\n",
|
||
|
" <th>SVT: /25</th>\n",
|
||
|
" <th>Phys. : /25</th>\n",
|
||
|
" <th>Techno: /25</th>\n",
|
||
|
" <th>classe</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDALLAH Faouzia</td>\n",
|
||
|
" <td>38</td>\n",
|
||
|
" <td>22</td>\n",
|
||
|
" <td>28</td>\n",
|
||
|
" <td>16.5</td>\n",
|
||
|
" <td>11</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDALLAH Sarati</td>\n",
|
||
|
" <td>49</td>\n",
|
||
|
" <td>23</td>\n",
|
||
|
" <td>39</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>15</td>\n",
|
||
|
" <td>13.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABDOU SOUFFE Momed</td>\n",
|
||
|
" <td>64</td>\n",
|
||
|
" <td>41</td>\n",
|
||
|
" <td>89</td>\n",
|
||
|
" <td>25</td>\n",
|
||
|
" <td>19</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>ABDOUL-KADER Sinina</td>\n",
|
||
|
" <td>61.5</td>\n",
|
||
|
" <td>33</td>\n",
|
||
|
" <td>52</td>\n",
|
||
|
" <td>15.5</td>\n",
|
||
|
" <td>16</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>ALI Aïda</td>\n",
|
||
|
" <td>54</td>\n",
|
||
|
" <td>43</td>\n",
|
||
|
" <td>50</td>\n",
|
||
|
" <td>17.5</td>\n",
|
||
|
" <td>14</td>\n",
|
||
|
" <td>19.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Unnamed: 0 Français: /100 HG: /50 Maths: /100 SVT: /25 \\\n",
|
||
|
"0 ABDALLAH Faouzia 38 22 28 16.5 \n",
|
||
|
"1 ABDALLAH Sarati 49 23 39 11.5 \n",
|
||
|
"2 ABDOU SOUFFE Momed 64 41 89 25 \n",
|
||
|
"3 ABDOUL-KADER Sinina 61.5 33 52 15.5 \n",
|
||
|
"4 ALI Aïda 54 43 50 17.5 \n",
|
||
|
"\n",
|
||
|
" Phys. : /25 Techno: /25 classe \n",
|
||
|
"0 11 11.5 301 \n",
|
||
|
"1 15 13.5 301 \n",
|
||
|
"2 19 18.5 301 \n",
|
||
|
"3 16 18.5 301 \n",
|
||
|
"4 14 19.5 301 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"gene_df.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style>\n",
|
||
|
" .dataframe thead tr:only-child th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: left;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Nom</th>\n",
|
||
|
" <th>Français</th>\n",
|
||
|
" <th>HG</th>\n",
|
||
|
" <th>Maths</th>\n",
|
||
|
" <th>SVT</th>\n",
|
||
|
" <th>Physique</th>\n",
|
||
|
" <th>Techno</th>\n",
|
||
|
" <th>Classe</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDALLAH Faouzia</td>\n",
|
||
|
" <td>38</td>\n",
|
||
|
" <td>22</td>\n",
|
||
|
" <td>28</td>\n",
|
||
|
" <td>16.5</td>\n",
|
||
|
" <td>11</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDALLAH Sarati</td>\n",
|
||
|
" <td>49</td>\n",
|
||
|
" <td>23</td>\n",
|
||
|
" <td>39</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>15</td>\n",
|
||
|
" <td>13.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABDOU SOUFFE Momed</td>\n",
|
||
|
" <td>64</td>\n",
|
||
|
" <td>41</td>\n",
|
||
|
" <td>89</td>\n",
|
||
|
" <td>25</td>\n",
|
||
|
" <td>19</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>ABDOUL-KADER Sinina</td>\n",
|
||
|
" <td>61.5</td>\n",
|
||
|
" <td>33</td>\n",
|
||
|
" <td>52</td>\n",
|
||
|
" <td>15.5</td>\n",
|
||
|
" <td>16</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>ALI Aïda</td>\n",
|
||
|
" <td>54</td>\n",
|
||
|
" <td>43</td>\n",
|
||
|
" <td>50</td>\n",
|
||
|
" <td>17.5</td>\n",
|
||
|
" <td>14</td>\n",
|
||
|
" <td>19.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Nom Français HG Maths SVT Physique Techno Classe\n",
|
||
|
"0 ABDALLAH Faouzia 38 22 28 16.5 11 11.5 301\n",
|
||
|
"1 ABDALLAH Sarati 49 23 39 11.5 15 13.5 301\n",
|
||
|
"2 ABDOU SOUFFE Momed 64 41 89 25 19 18.5 301\n",
|
||
|
"3 ABDOUL-KADER Sinina 61.5 33 52 15.5 16 18.5 301\n",
|
||
|
"4 ALI Aïda 54 43 50 17.5 14 19.5 301"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"gene_df.columns = [\"Nom\", \"Français\", \"HG\", \"Maths\", \"SVT\", \"Physique\", \"Techno\", \"Classe\"]\n",
|
||
|
"gene_df.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 20,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style>\n",
|
||
|
" .dataframe thead tr:only-child th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: left;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Nom</th>\n",
|
||
|
" <th>Français</th>\n",
|
||
|
" <th>HG</th>\n",
|
||
|
" <th>Maths</th>\n",
|
||
|
" <th>SVT</th>\n",
|
||
|
" <th>Physique</th>\n",
|
||
|
" <th>Techno</th>\n",
|
||
|
" <th>Classe</th>\n",
|
||
|
" <th>_Français</th>\n",
|
||
|
" <th>_HG</th>\n",
|
||
|
" <th>_Maths</th>\n",
|
||
|
" <th>_SVT</th>\n",
|
||
|
" <th>_Physique</th>\n",
|
||
|
" <th>_Techno</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDALLAH Faouzia</td>\n",
|
||
|
" <td>38.0</td>\n",
|
||
|
" <td>22.0</td>\n",
|
||
|
" <td>28.0</td>\n",
|
||
|
" <td>16.5</td>\n",
|
||
|
" <td>11.0</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.380</td>\n",
|
||
|
" <td>0.44</td>\n",
|
||
|
" <td>0.28</td>\n",
|
||
|
" <td>0.66</td>\n",
|
||
|
" <td>0.44</td>\n",
|
||
|
" <td>0.46</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDALLAH Sarati</td>\n",
|
||
|
" <td>49.0</td>\n",
|
||
|
" <td>23.0</td>\n",
|
||
|
" <td>39.0</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>15.0</td>\n",
|
||
|
" <td>13.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.490</td>\n",
|
||
|
" <td>0.46</td>\n",
|
||
|
" <td>0.39</td>\n",
|
||
|
" <td>0.46</td>\n",
|
||
|
" <td>0.60</td>\n",
|
||
|
" <td>0.54</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABDOU SOUFFE Momed</td>\n",
|
||
|
" <td>64.0</td>\n",
|
||
|
" <td>41.0</td>\n",
|
||
|
" <td>89.0</td>\n",
|
||
|
" <td>25.0</td>\n",
|
||
|
" <td>19.0</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.640</td>\n",
|
||
|
" <td>0.82</td>\n",
|
||
|
" <td>0.89</td>\n",
|
||
|
" <td>1.00</td>\n",
|
||
|
" <td>0.76</td>\n",
|
||
|
" <td>0.74</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>ABDOUL-KADER Sinina</td>\n",
|
||
|
" <td>61.5</td>\n",
|
||
|
" <td>33.0</td>\n",
|
||
|
" <td>52.0</td>\n",
|
||
|
" <td>15.5</td>\n",
|
||
|
" <td>16.0</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.615</td>\n",
|
||
|
" <td>0.66</td>\n",
|
||
|
" <td>0.52</td>\n",
|
||
|
" <td>0.62</td>\n",
|
||
|
" <td>0.64</td>\n",
|
||
|
" <td>0.74</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>ALI Aïda</td>\n",
|
||
|
" <td>54.0</td>\n",
|
||
|
" <td>43.0</td>\n",
|
||
|
" <td>50.0</td>\n",
|
||
|
" <td>17.5</td>\n",
|
||
|
" <td>14.0</td>\n",
|
||
|
" <td>19.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.540</td>\n",
|
||
|
" <td>0.86</td>\n",
|
||
|
" <td>0.50</td>\n",
|
||
|
" <td>0.70</td>\n",
|
||
|
" <td>0.56</td>\n",
|
||
|
" <td>0.78</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Nom Français HG Maths SVT Physique Techno Classe \\\n",
|
||
|
"0 ABDALLAH Faouzia 38.0 22.0 28.0 16.5 11.0 11.5 301 \n",
|
||
|
"1 ABDALLAH Sarati 49.0 23.0 39.0 11.5 15.0 13.5 301 \n",
|
||
|
"2 ABDOU SOUFFE Momed 64.0 41.0 89.0 25.0 19.0 18.5 301 \n",
|
||
|
"3 ABDOUL-KADER Sinina 61.5 33.0 52.0 15.5 16.0 18.5 301 \n",
|
||
|
"4 ALI Aïda 54.0 43.0 50.0 17.5 14.0 19.5 301 \n",
|
||
|
"\n",
|
||
|
" _Français _HG _Maths _SVT _Physique _Techno \n",
|
||
|
"0 0.380 0.44 0.28 0.66 0.44 0.46 \n",
|
||
|
"1 0.490 0.46 0.39 0.46 0.60 0.54 \n",
|
||
|
"2 0.640 0.82 0.89 1.00 0.76 0.74 \n",
|
||
|
"3 0.615 0.66 0.52 0.62 0.64 0.74 \n",
|
||
|
"4 0.540 0.86 0.50 0.70 0.56 0.78 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 20,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"for m, coef in coeff.items():\n",
|
||
|
" gene_df[m] = pd.to_numeric(gene_df[m], errors='coerce')\n",
|
||
|
" gene_df[\"_\"+m] = gene_df[m]/coef\n",
|
||
|
"gene_df.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 22,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"gene_df = gene_df = gene_df.assign(\n",
|
||
|
" total = gene_df[matieres].sum(1),\n",
|
||
|
" maximum = 325\n",
|
||
|
")\n",
|
||
|
"gene_df = gene_df.assign(\n",
|
||
|
" normalisee = gene_df[\"total\"]/gene_df[\"maximum\"]\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 23,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style>\n",
|
||
|
" .dataframe thead tr:only-child th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: left;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Nom</th>\n",
|
||
|
" <th>Français</th>\n",
|
||
|
" <th>HG</th>\n",
|
||
|
" <th>Maths</th>\n",
|
||
|
" <th>SVT</th>\n",
|
||
|
" <th>Physique</th>\n",
|
||
|
" <th>Techno</th>\n",
|
||
|
" <th>Classe</th>\n",
|
||
|
" <th>_Français</th>\n",
|
||
|
" <th>_HG</th>\n",
|
||
|
" <th>_Maths</th>\n",
|
||
|
" <th>_SVT</th>\n",
|
||
|
" <th>_Physique</th>\n",
|
||
|
" <th>_Techno</th>\n",
|
||
|
" <th>maximum</th>\n",
|
||
|
" <th>total</th>\n",
|
||
|
" <th>normalisee</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDALLAH Faouzia</td>\n",
|
||
|
" <td>38.0</td>\n",
|
||
|
" <td>22.0</td>\n",
|
||
|
" <td>28.0</td>\n",
|
||
|
" <td>16.5</td>\n",
|
||
|
" <td>11.0</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.380</td>\n",
|
||
|
" <td>0.44</td>\n",
|
||
|
" <td>0.28</td>\n",
|
||
|
" <td>0.66</td>\n",
|
||
|
" <td>0.44</td>\n",
|
||
|
" <td>0.46</td>\n",
|
||
|
" <td>325</td>\n",
|
||
|
" <td>127.0</td>\n",
|
||
|
" <td>0.390769</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDALLAH Sarati</td>\n",
|
||
|
" <td>49.0</td>\n",
|
||
|
" <td>23.0</td>\n",
|
||
|
" <td>39.0</td>\n",
|
||
|
" <td>11.5</td>\n",
|
||
|
" <td>15.0</td>\n",
|
||
|
" <td>13.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.490</td>\n",
|
||
|
" <td>0.46</td>\n",
|
||
|
" <td>0.39</td>\n",
|
||
|
" <td>0.46</td>\n",
|
||
|
" <td>0.60</td>\n",
|
||
|
" <td>0.54</td>\n",
|
||
|
" <td>325</td>\n",
|
||
|
" <td>151.0</td>\n",
|
||
|
" <td>0.464615</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABDOU SOUFFE Momed</td>\n",
|
||
|
" <td>64.0</td>\n",
|
||
|
" <td>41.0</td>\n",
|
||
|
" <td>89.0</td>\n",
|
||
|
" <td>25.0</td>\n",
|
||
|
" <td>19.0</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.640</td>\n",
|
||
|
" <td>0.82</td>\n",
|
||
|
" <td>0.89</td>\n",
|
||
|
" <td>1.00</td>\n",
|
||
|
" <td>0.76</td>\n",
|
||
|
" <td>0.74</td>\n",
|
||
|
" <td>325</td>\n",
|
||
|
" <td>256.5</td>\n",
|
||
|
" <td>0.789231</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>ABDOUL-KADER Sinina</td>\n",
|
||
|
" <td>61.5</td>\n",
|
||
|
" <td>33.0</td>\n",
|
||
|
" <td>52.0</td>\n",
|
||
|
" <td>15.5</td>\n",
|
||
|
" <td>16.0</td>\n",
|
||
|
" <td>18.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.615</td>\n",
|
||
|
" <td>0.66</td>\n",
|
||
|
" <td>0.52</td>\n",
|
||
|
" <td>0.62</td>\n",
|
||
|
" <td>0.64</td>\n",
|
||
|
" <td>0.74</td>\n",
|
||
|
" <td>325</td>\n",
|
||
|
" <td>196.5</td>\n",
|
||
|
" <td>0.604615</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>ALI Aïda</td>\n",
|
||
|
" <td>54.0</td>\n",
|
||
|
" <td>43.0</td>\n",
|
||
|
" <td>50.0</td>\n",
|
||
|
" <td>17.5</td>\n",
|
||
|
" <td>14.0</td>\n",
|
||
|
" <td>19.5</td>\n",
|
||
|
" <td>301</td>\n",
|
||
|
" <td>0.540</td>\n",
|
||
|
" <td>0.86</td>\n",
|
||
|
" <td>0.50</td>\n",
|
||
|
" <td>0.70</td>\n",
|
||
|
" <td>0.56</td>\n",
|
||
|
" <td>0.78</td>\n",
|
||
|
" <td>325</td>\n",
|
||
|
" <td>198.0</td>\n",
|
||
|
" <td>0.609231</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Nom Français HG Maths SVT Physique Techno Classe \\\n",
|
||
|
"0 ABDALLAH Faouzia 38.0 22.0 28.0 16.5 11.0 11.5 301 \n",
|
||
|
"1 ABDALLAH Sarati 49.0 23.0 39.0 11.5 15.0 13.5 301 \n",
|
||
|
"2 ABDOU SOUFFE Momed 64.0 41.0 89.0 25.0 19.0 18.5 301 \n",
|
||
|
"3 ABDOUL-KADER Sinina 61.5 33.0 52.0 15.5 16.0 18.5 301 \n",
|
||
|
"4 ALI Aïda 54.0 43.0 50.0 17.5 14.0 19.5 301 \n",
|
||
|
"\n",
|
||
|
" _Français _HG _Maths _SVT _Physique _Techno maximum total \\\n",
|
||
|
"0 0.380 0.44 0.28 0.66 0.44 0.46 325 127.0 \n",
|
||
|
"1 0.490 0.46 0.39 0.46 0.60 0.54 325 151.0 \n",
|
||
|
"2 0.640 0.82 0.89 1.00 0.76 0.74 325 256.5 \n",
|
||
|
"3 0.615 0.66 0.52 0.62 0.64 0.74 325 196.5 \n",
|
||
|
"4 0.540 0.86 0.50 0.70 0.56 0.78 325 198.0 \n",
|
||
|
"\n",
|
||
|
" normalisee \n",
|
||
|
"0 0.390769 \n",
|
||
|
"1 0.464615 \n",
|
||
|
"2 0.789231 \n",
|
||
|
"3 0.604615 \n",
|
||
|
"4 0.609231 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 23,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"gene_df.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 24,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7fd710b74ac8>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 24,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADx5JREFUeJzt3XGMpPVdx/HPt3e0vd7iIR6MZCEu1oaEuFG4Sa1pJTs1\nVnrX5DTpHzQVW1OzfygXTK6x2zQm9Q/jaUJjbYgRWxQNdmIqhIZraVEZSROhztKDveOKRVjTbuid\nhHbLEFI8+vWPeRbHYZ55fjOzzzPz3X2/ks3OPPN7fs/3O7+9T2aefWbP3F0AgDjeMO0CAACjIbgB\nIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCC2VvGpAcPHvSFhYUypp5JL730kvbv3z/t\nMiq3G/um592j6r5XV1efd/fLUsaWEtwLCwtqt9tlTD2TWq2WlpaWpl1G5XZj3/S8e1Tdt5n9V+pY\nTpUAQDAENwAEQ3ADQDAENwAEQ3ADQDBJwW1ml5jZF8zsm2Z21sx+sezCAACDpV4O+GlJD7j7+83s\njZLeUmJNAIAhCoPbzA5IukHShyXJ3V+R9Eq5ZQEA8qScKrla0n9L+msz+4aZfdbMdt/HqABgRljR\nfxZsZnVJj0h6p7s/amaflvQDd/+DvnHLkpYlqVarHWo2myWVPHs6nY7m5uamXUblZqnvtY1NSdLi\n/IGk7eOapZ6rsht7lqrvu9ForLp7PWVsSnD/pKRH3H0hu/9Lklbc/UjePvV63fnI+843S30vrJyU\nJK2fOJK0fVyz1HNVdmPP0lQ+8p4c3IWnStz9u5K+bWbXZJt+WdKTE9QHAJhA6lUlxyTdnV1R8oyk\n3yqvJADAMEnB7e6nJCW9hAcAlItPTgJAMAQ3AARDcANAMAQ3AARDcANAMAQ3AARDcANAMAQ3AARD\ncANAMAQ3AARDcANAMAQ3AARDcANAMAQ3AARDcANAMAQ3AARDcANAMAQ3AARDcANAMAQ3AARDcANA\nMAQ3AARDcANAMAQ3AARDcANAMAQ3AASzN2WQma1LelHSq5IuuHu9zKIAAPmSgjvTcPfnS6sEAJCE\nUyUAEIy5e/Egs2clfU+SS/pLd79jwJhlScuSVKvVDjWbzW0udXZ1Oh3Nzc1Nu4zKFfW9trEpSVqc\nP5A85zj7DNsvdb7UcTt5rfOeg53c8zBV991oNFZTT0OnBve8u2+Y2eWSHpR0zN0fzhtfr9e93W4n\nFxxdq9XS0tLStMuoXFHfCysnJUnrJ44kzznOPsP2S50vddxOXuu852An9zxM1X2bWXJwJ50qcfeN\n7Pt5SfdKevv45QEAJlEY3Ga238wu3rot6T2STpddGABgsJSrSmqS7jWzrfF/7+4PlFoVACBXYXC7\n+zOSfq6CWgAACbgcEACCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiC\nGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCC\nIbgBIBiCGwCCSQ5uM9tjZt8ws/vLLAgAMNwor7hvlXS2rEIAAGmSgtvMrpR0RNJnyy0HAFAk9RX3\nn0n6fUk/KrEWAEACc/fhA8zeJ+mwu/+OmS1J+qi7v2/AuGVJy5JUq9UONZvNEsqdTZ1OR3Nzc9Mu\no3JFfa9tbEqSFucPJM85zj7D9kudL3Vcf8+THnfSfbZT3vH5+a5Go9FYdfd6ytiU4P5jSTdLuiDp\nzZJ+TNI97v4befvU63Vvt9vpFQfXarW0tLQ07TIqV9T3wspJSdL6iSPJc46zz7D9UudLHdff86TH\nnXSf7ZR3fH6+q2FmycFdeKrE3T/u7le6+4KkmyT9y7DQBgCUi+u4ASCYvaMMdveWpFYplQAAkvCK\nGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCC\nIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgB\nIJjC4DazN5vZ183scTM7Y2Z/WEVhAIDB9iaM+aGkd7t7x8wukvQ1M/uyuz9Scm0AgAEKg9vdXVIn\nu3tR9uVlFgUAyGfdXC4YZLZH0qqkn5F0u7t/bMCYZUnLklSr1Q41m81tLnV2dTodzc3NTbuM16xt\nbEqSFucPTLS96PHzL2zq3Mv5820ZNO+4teTp3y+lhnH231rrovlT++ifZ1ANoz4X48o73qz9fFel\n6r4bjcaqu9dTxiYF92uDzS6RdK+kY+5+Om9cvV73drudPG90rVZLS0tL0y7jNQsrJyVJ6yeOTLS9\n6PHP3H2fblvbmzvflkHzjltLnv79UmoYZ/+ttS6aP7WP/nkG1TDqczGuvOPN2s93Varu28ySg3uk\nq0rc/fuSHpJ04ziFAQAml3JVyWXZK22Z2T5JvyLpm2UXBgAYLOWqkisk3ZWd536DpH9w9/vLLQsA\nkCflqpInJF1XQS0AgAR8chIAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4\nASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAY\nghsAgiG4ASAYghsAgikMbjO7ysweMrMnzeyMmd1aRWEAgMH2Joy5IOm4uz9mZhdLWjWzB939yZJr\nAwAMUPiK292fc/fHstsvSjorab7swgAAg410jtvMFiRdJ+nRMooBABQzd08baDYn6V8l/ZG73zPg\n8WVJy5JUq9UONZvN7axzZq1tbKq2T7r80gOVHEuSFueHH6t/3Nb9Lf37F82bN19tn3Tu5eK6e+ft\nr6V/TF4to+6XN75o/6Jx51/YHNhz6nOaUte4z0VRTUXy5t1a51Hni67T6Whubq6y4zUajVV3r6eM\nTQpuM7tI0v2SvuLunyoaX6/Xvd1upxw/vIWVkzq+eEHHPni0kmNJ0vqJIyON27q/pX//onnz5ju+\neEG3rRX/mqR33v5a+sfk1TLqfnnji/YvGveZu+8b2HPqc5pS17jPRVFNRfLm3VrnUeeLrtVqaWlp\nqbLjmVlycKdcVWKSPifpbEpoAwDKlXKO+52Sbpb0bjM7lX0dLrkuAECOwve57v41SVZBLQCABHxy\nEgCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCC\nIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgBIBiCGwCCIbgB\nIJjC4DazO83svJmdrqIgAMBwKa+4/0bSjSXXAQBIVBjc7v6wpBcqqAUAkMDcvXiQ2YKk+939Z4eM\nWZa0LEm1Wu1Qs9kcq6C1jU1J0uL8gaTtqfuPq6geSartky6/9MDrtm/tM2pPKcfs1X+cInnjR52n\ntk8693LS0MpqKltez0V1TtLHdj0HqT9P/VLXedw1HFZX1f/ee3U6HT27+erA+fuPux11NBqNVXev\np4zdtuDuVa/Xvd1upwx9nYWVk5Kk9RNHkran7j+uonok6fjiBR374NHXbd/aZ9SeUo7Zq/84RfLG\njzrP8cULum1tb9LYqmoqW17PRXVO0sd2PQepP0/9Utd53DUcVlfV/957tVotffiBlwbO33/c7ajD\nzJKDm6tKACAYghsAgkm5HPDzkv5N0jVm9h0z+0j5ZQEA8hSeuHL3D1RRCAAgDadKACAYghsAgiG4\nASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAY\nghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASCYpOA2sxvN7Ckze9rM\nVsouCgCQrzC4zWyPpNs
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7fd7108b2fd0>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"gene_df[\"total\"].hist(bins=150)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 25,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style>\n",
|
||
|
" .dataframe thead tr:only-child th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: left;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Français</th>\n",
|
||
|
" <th>HG</th>\n",
|
||
|
" <th>Maths</th>\n",
|
||
|
" <th>SVT</th>\n",
|
||
|
" <th>Physique</th>\n",
|
||
|
" <th>Techno</th>\n",
|
||
|
" <th>_Français</th>\n",
|
||
|
" <th>_HG</th>\n",
|
||
|
" <th>_Maths</th>\n",
|
||
|
" <th>_SVT</th>\n",
|
||
|
" <th>_Physique</th>\n",
|
||
|
" <th>_Techno</th>\n",
|
||
|
" <th>maximum</th>\n",
|
||
|
" <th>total</th>\n",
|
||
|
" <th>normalisee</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>count</th>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>180.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>180.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>179.000000</td>\n",
|
||
|
" <td>188.0</td>\n",
|
||
|
" <td>180.000000</td>\n",
|
||
|
" <td>180.000000</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>mean</th>\n",
|
||
|
" <td>45.474860</td>\n",
|
||
|
" <td>22.427778</td>\n",
|
||
|
" <td>34.597765</td>\n",
|
||
|
" <td>12.740223</td>\n",
|
||
|
" <td>10.522346</td>\n",
|
||
|
" <td>12.709497</td>\n",
|
||
|
" <td>0.454749</td>\n",
|
||
|
" <td>0.448556</td>\n",
|
||
|
" <td>0.345978</td>\n",
|
||
|
" <td>0.509609</td>\n",
|
||
|
" <td>0.420894</td>\n",
|
||
|
" <td>0.508380</td>\n",
|
||
|
" <td>325.0</td>\n",
|
||
|
" <td>137.827778</td>\n",
|
||
|
" <td>0.424085</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>std</th>\n",
|
||
|
" <td>15.803416</td>\n",
|
||
|
" <td>9.165170</td>\n",
|
||
|
" <td>17.255359</td>\n",
|
||
|
" <td>5.063457</td>\n",
|
||
|
" <td>4.919812</td>\n",
|
||
|
" <td>5.013686</td>\n",
|
||
|
" <td>0.158034</td>\n",
|
||
|
" <td>0.183303</td>\n",
|
||
|
" <td>0.172554</td>\n",
|
||
|
" <td>0.202538</td>\n",
|
||
|
" <td>0.196792</td>\n",
|
||
|
" <td>0.200547</td>\n",
|
||
|
" <td>0.0</td>\n",
|
||
|
" <td>46.713537</td>\n",
|
||
|
" <td>0.143734</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>min</th>\n",
|
||
|
" <td>2.000000</td>\n",
|
||
|
" <td>0.000000</td>\n",
|
||
|
" <td>1.000000</td>\n",
|
||
|
" <td>2.000000</td>\n",
|
||
|
" <td>2.000000</td>\n",
|
||
|
" <td>2.500000</td>\n",
|
||
|
" <td>0.020000</td>\n",
|
||
|
" <td>0.000000</td>\n",
|
||
|
" <td>0.010000</td>\n",
|
||
|
" <td>0.080000</td>\n",
|
||
|
" <td>0.080000</td>\n",
|
||
|
" <td>0.100000</td>\n",
|
||
|
" <td>325.0</td>\n",
|
||
|
" <td>13.000000</td>\n",
|
||
|
" <td>0.040000</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25%</th>\n",
|
||
|
" <td>37.250000</td>\n",
|
||
|
" <td>14.750000</td>\n",
|
||
|
" <td>23.000000</td>\n",
|
||
|
" <td>9.000000</td>\n",
|
||
|
" <td>6.000000</td>\n",
|
||
|
" <td>8.500000</td>\n",
|
||
|
" <td>0.372500</td>\n",
|
||
|
" <td>0.295000</td>\n",
|
||
|
" <td>0.230000</td>\n",
|
||
|
" <td>0.360000</td>\n",
|
||
|
" <td>0.240000</td>\n",
|
||
|
" <td>0.340000</td>\n",
|
||
|
" <td>325.0</td>\n",
|
||
|
" <td>106.000000</td>\n",
|
||
|
" <td>0.326154</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>50%</th>\n",
|
||
|
" <td>47.000000</td>\n",
|
||
|
" <td>22.500000</td>\n",
|
||
|
" <td>30.000000</td>\n",
|
||
|
" <td>12.000000</td>\n",
|
||
|
" <td>10.000000</td>\n",
|
||
|
" <td>12.500000</td>\n",
|
||
|
" <td>0.470000</td>\n",
|
||
|
" <td>0.450000</td>\n",
|
||
|
" <td>0.300000</td>\n",
|
||
|
" <td>0.480000</td>\n",
|
||
|
" <td>0.400000</td>\n",
|
||
|
" <td>0.500000</td>\n",
|
||
|
" <td>325.0</td>\n",
|
||
|
" <td>136.000000</td>\n",
|
||
|
" <td>0.418462</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>75%</th>\n",
|
||
|
" <td>55.250000</td>\n",
|
||
|
" <td>28.250000</td>\n",
|
||
|
" <td>42.500000</td>\n",
|
||
|
" <td>16.000000</td>\n",
|
||
|
" <td>14.000000</td>\n",
|
||
|
" <td>16.500000</td>\n",
|
||
|
" <td>0.552500</td>\n",
|
||
|
" <td>0.565000</td>\n",
|
||
|
" <td>0.425000</td>\n",
|
||
|
" <td>0.640000</td>\n",
|
||
|
" <td>0.560000</td>\n",
|
||
|
" <td>0.660000</td>\n",
|
||
|
" <td>325.0</td>\n",
|
||
|
" <td>169.500000</td>\n",
|
||
|
" <td>0.521538</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>max</th>\n",
|
||
|
" <td>88.000000</td>\n",
|
||
|
" <td>43.000000</td>\n",
|
||
|
" <td>90.000000</td>\n",
|
||
|
" <td>25.000000</td>\n",
|
||
|
" <td>24.000000</td>\n",
|
||
|
" <td>23.500000</td>\n",
|
||
|
" <td>0.880000</td>\n",
|
||
|
" <td>0.860000</td>\n",
|
||
|
" <td>0.900000</td>\n",
|
||
|
" <td>1.000000</td>\n",
|
||
|
" <td>0.960000</td>\n",
|
||
|
" <td>0.940000</td>\n",
|
||
|
" <td>325.0</td>\n",
|
||
|
" <td>261.000000</td>\n",
|
||
|
" <td>0.803077</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Français HG Maths SVT Physique Techno \\\n",
|
||
|
"count 179.000000 180.000000 179.000000 179.000000 179.000000 179.000000 \n",
|
||
|
"mean 45.474860 22.427778 34.597765 12.740223 10.522346 12.709497 \n",
|
||
|
"std 15.803416 9.165170 17.255359 5.063457 4.919812 5.013686 \n",
|
||
|
"min 2.000000 0.000000 1.000000 2.000000 2.000000 2.500000 \n",
|
||
|
"25% 37.250000 14.750000 23.000000 9.000000 6.000000 8.500000 \n",
|
||
|
"50% 47.000000 22.500000 30.000000 12.000000 10.000000 12.500000 \n",
|
||
|
"75% 55.250000 28.250000 42.500000 16.000000 14.000000 16.500000 \n",
|
||
|
"max 88.000000 43.000000 90.000000 25.000000 24.000000 23.500000 \n",
|
||
|
"\n",
|
||
|
" _Français _HG _Maths _SVT _Physique _Techno \\\n",
|
||
|
"count 179.000000 180.000000 179.000000 179.000000 179.000000 179.000000 \n",
|
||
|
"mean 0.454749 0.448556 0.345978 0.509609 0.420894 0.508380 \n",
|
||
|
"std 0.158034 0.183303 0.172554 0.202538 0.196792 0.200547 \n",
|
||
|
"min 0.020000 0.000000 0.010000 0.080000 0.080000 0.100000 \n",
|
||
|
"25% 0.372500 0.295000 0.230000 0.360000 0.240000 0.340000 \n",
|
||
|
"50% 0.470000 0.450000 0.300000 0.480000 0.400000 0.500000 \n",
|
||
|
"75% 0.552500 0.565000 0.425000 0.640000 0.560000 0.660000 \n",
|
||
|
"max 0.880000 0.860000 0.900000 1.000000 0.960000 0.940000 \n",
|
||
|
"\n",
|
||
|
" maximum total normalisee \n",
|
||
|
"count 188.0 180.000000 180.000000 \n",
|
||
|
"mean 325.0 137.827778 0.424085 \n",
|
||
|
"std 0.0 46.713537 0.143734 \n",
|
||
|
"min 325.0 13.000000 0.040000 \n",
|
||
|
"25% 325.0 106.000000 0.326154 \n",
|
||
|
"50% 325.0 136.000000 0.418462 \n",
|
||
|
"75% 325.0 169.500000 0.521538 \n",
|
||
|
"max 325.0 261.000000 0.803077 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 25,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"gene_df.describe()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 26,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7fd7108bc208>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 26,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD9CAYAAABHnDf0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGw9JREFUeJzt3X+U3XV95/Hni4lMaMB4amy2EJpkS9ozY9CUTEFNtmYa\n8fBLsKddwxRp4cySjdvM7pqyDjIuAXQqwRSPBjSbcSLWQgDR0pQkoCZ3qhF1+SE/ksyiWRAZoIuA\ncAySkYT3/nG/E28mk8ydmzv3x2dej3Pume+Pz/d+35/7vfc9n+/n+0sRgZmZpeWYagdgZmbl5+Ru\nZpYgJ3czswQ5uZuZJcjJ3cwsQU7uZmYJcnI3M0uQk7uZWYKc3M3MEjSpWiueNm1azJo1q2Lre/XV\nV5kyZUrF1ldprl/9Srlu4PqV24MPPvhCRLxttHJVS+6zZs3igQceqNj6+vr6WLRoUcXWV2muX/1K\nuW7g+pWbpKeKKeduGTOzBDm5m5klyMndzCxBTu5mZglycjczS9CoyV3SeknPS9pxmPmS9HlJuyU9\nKum08odpZmZjUUzL/WbgrCPMPxuYk72WAl88+rDMzOxojJrcI+I7wEtHKHIB8A+R9wPgLZJ+t1wB\nmpnZ2JXjIqaTgKcLxgeyac8NLyhpKfnWPdOnT6evr68Mqy/Onj17Krq+SnP9altra2vJy+ZyuTJG\nUnn1vu1GU6v1q+gVqhGxDlgH0NLSEpW8qstXydW3eq/fkR5EP+uKTfz0unMrGE1l1fu2G02t1q8c\nZ8s8A5xcMD4jm2ZmZlVSjuS+Efir7KyZdwGvRMQhXTJmZlY5o3bLSNoALAKmSRoAVgJvAoiItcBm\n4BxgN/Ar4NLxCtbMzIozanKPiLZR5gfwN2WLyMzMjpqvUDUzS5CTu5lZgqr2sA4zS4ekkpc90mmi\nVjq33M3sqEXEYV8zO+8+4nwbH07uZmYJcnI3M0uQ+9zNzEZRj8cU3HI3MxtFPR5TcHI3M0uQk7uZ\nWYKc3M3MEuTkbjWto6ODyZMn09rayuTJk+no6Kh2SGZ1wWfLWM3q6Ohg7dq1rFq1iubmZnbt2kVn\nZycAa9asqXJ0ZrXNLXerWT09PSxZsoT169dz7rnnsn79epYsWUJPT0+1QzOreW65W80aHBxk+/bt\nfPnLX2b//v00NDRw6aWXMjg4WO3QzGpe8i33DRs2MHfuXBYvXszcuXPZsGFDtUOyIkninHPOobW1\nlUmTJtHa2so555xzVBeUmE0USbfcN2zYQFdXF729vQdafu3t7QC0tR3xGSRWAyKCnp4eTjnlFJqb\nm7nhhhvo6enxzabMipB0cu/u7qa3t5fW1tYDTyjv7e2lo6PDyb0OvP3tb2fOnDlceeWVDA4O0tjY\nyHnnncdPfvKTaodmVvOSTu79/f0sXLjwoGkLFy6kv7+/ShHZWHR1ddHV1cWWLVsO2vPq7u6udmhm\nNS/p5N7U1MT27dtpbW09MG379u00NTVVMSor1tDeVUdHB/39/TQ1NdHd3e29LrMiJJ3cu7q6WLJk\nCVOmTOGpp55i5syZvPrqq3zuc5+rdmhWpLa2Ntra2g50q5lZcZI/W2aIz7Aws4kk6eTe3d3N7bff\nzpNPPsnWrVt58sknuf322+u2z1bSYV+tra1HnG9mE0vSyT21A6r1eE9pM6uOpJP70AHVQj6gamYT\nQdLJvauri/b2dnK5HPv27SOXy9He3k5XV1e1QzMzG1dJny3jU+nMbKJKOrmDT6Uzs4kp6W4ZM7OJ\nysndzCxBRSV3SWdJelzSbklXjDD/9yTlJP1I0qOSzil/qGZmVqxRk7ukBuAm4GygGWiT1Dys2CeA\nOyLij4ALgS+UO1CbmHw/frPSFHNA9XRgd0Q8ASDpNuACYFdBmQDenA1PBZ4tZ5A2Mfl+/GalK6Zb\n5iTg6YLxgWxaoauBD0saADYDfkS9HbXC+/EPPYmpt7e3bm8fYVZJ5ToVsg24OSL+XtK7ga9KmhsR\nbxQWkrQUWAowffp0+vr6yrT60e3Zs6ei66uG1OrX39/P/v376evrO7D99u/fT39/f3J1Ta0+w7l+\nlVdMcn8GOLlgfEY2rVA7cBZARHxf0mRgGvB8YaGIWAesA2hpaYlKnnee/Hnu92xKrn5NTU00NDSw\naNGiA9svl8vR1NSUVl0T3HYHcf2qophumfuBOZJmSzqW/AHTjcPK/AxYDCCpCZgM/LycgdrE49tH\nmJVu1JZ7ROyTtBy4F2gA1kfETknXAg9ExEbgb4EeSR8lf3D1kvCtCO0otbW1cd9993H22WcfeIbq\nZZdd5oOpZkUoqs89IjaTP1BaOO2qguFdwILyhmYT3YYNG9i0adMhz1B9z3ve4wRvNgpfoWo1y2fL\nmJXOyd1qVmoPWzGrpOTvCmn1q6mpiWuuuYa77rrrwC2bP/jBD/phK2ZFcHK3mtXa2sqqVatYtWoV\nzc3N7Nq1i87OTpYtW1bt0MxqXlLJ/WgeBO2Te2pPLpejs7OT9evXH2i5d3Z2ctddd1U7NLOal1Sf\nux8gnZb+/n5WrlzJjh072Lp1Kzt27GDlypXuczcrQlItd0uL+9zNSufkbjXLfe5mpXNyt5qVy+WY\nN28el19+ORGBJObPn08ul6t2aGY1z8ndatauXbs45phjWL169YGW+8c+9jHeeOON0Rc2m+CSOqBq\n6Vm6dCkrVqxg8uTJrFixgqVLl1Y7JLO64Ja71ayIYMuWLeRyOfbv308ul2PLli0+u8msCE7uVrMa\nGxtZsGABHR0dB86WWbBgAc8991y1QzOreU7uVjNGugjtlltuOTC8c+dOdu7cOWJZt+bNDuY+d6sZ\nI11ctnz5chobG4F8S3758uW+CM2sCE7uVtPWrFnD3r17mdl5N3v37mXNmjXVDsmsLji5m5klyMnd\nzCxBTu5mZglycjczS5CTu5lZgpzczcwS5ORuZpYgX6FqZga885pv8sprr5e07KwrNo15manHvYlH\nVr6/pPUVw8ndzAx45bXX+el15455ub6+PhYtWjTm5Ur5hzAW7pYxM0uQW+5mZZLabr3VNyd3szJJ\nbbfe6pu7ZczMEuTkbmaWICd3M7MEFZXcJZ0l6XFJuyVdcZgyH5K0S9JOSbeWN0wzMxuLUQ+oSmoA\nbgLOBAaA+yVtjIhdBWXmAB8HFkTELyT9zngFbGZmoyum5X46sDsinoiIXwO3ARcMK3MZcFNE/AIg\nIp4vb5hmZjYWxZwKeRLwdMH4AHDGsDJ/ACDpe0ADcHVE3DP8jSQtBZYCTJ8+nb6+vhJCLl2l11dp\nrl/1lRLjnj17Sq5bPXwmkHactbr9ynWe+yRgDrAImAF8R9KpEfFyYaGIWAesA2hpaYlSzu0t2T2b\nSjqXuG64ftVXYoylnudeF58JJB9nrW6/YrplngFOLhifkU0rNABsjIjXI+JJ4Mfkk72ZmVVBMcn9\nfmCOpNmSjgUuBDYOK3MX+VY7kqaR76Z5ooxxmpnZGIya3CNiH7AcuBfoB+6IiJ2SrpV0flbsXuBF\nSbuAHPA/IuLF8QrazMyOrKg+94jYDGweNu2qguEAVmQvMzOrMl+hamaWIN8Vssb4trFmVg5O7jXG\nt421WuWGR31xcjezorjhUV/qLrm79WBmNrq6S+5uPZiZjc5ny5iZJcjJ3cwsQU7uZmYJcnI3M0uQ\nk7uZWYKc3M3MEuTkbmaWICd3M7ME1d1FTGZm4+GEpis49StXlLbwV0pZH8DYL8gslpO7mRnwy/7r\nkrr63d0yZmYJcnI3M0uQu2XMyiS1Plurb07uZmWSWp+t1be6S+5uHZmZja7ukrtbR2Zmo/MBVTOz\nBDm5m5klqO66ZVLnYwpmVg5O7jXGxxTMrBzcLWNmliAndzOzBDm5m5klyH3uVlHvvOabvPLa6yUt\nW8rxganHvYlHVr6/pPWZ1bOikruks4DPAQ3AlyLiusOU+3PgTuCPI+KBskVpyXjltdd9wNisAkbt\nlpHUANwEnA00A22Smkc
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7fd7108c4f98>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"gene_df[norm_matieres].boxplot()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 27,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from pandas.plotting import scatter_matrix"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 31,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7fd705b06c50>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd7052fec18>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd7057ef208>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd70576f3c8>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd70577f400>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd70577f358>],\n",
|
||
|
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd705687ba8>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd705605240>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd7055655c0>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd705563278>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd7054c0ba8>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd70547af98>],\n",
|
||
|
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd70540f518>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd705420550>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704f7d358>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704ed6a20>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704e490b8>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704e2d438>],\n",
|
||
|
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd704da60f0>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704d05a20>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704d41e10>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704c54390>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704c62320>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd706534c18>],\n",
|
||
|
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd7069245c0>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704b6b1d0>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704b42a90>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704ab4128>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704a114a8>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704990160>],\n",
|
||
|
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7fd70496fa90>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd70492de80>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd7048be400>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd70484e438>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd70478c160>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fd704768908>]], dtype=object)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 31,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAANgCAYAAABgIvoLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXd0XNed5/l5r3JEAShkEIEEcw6iAkVlWZYt2ZLcttux\n7el2T3dP3u2Z2TA7Z86Z7j07Z3d2z0yfM7vbM6fds+62p23LtmQr2MpWlpgBkiARCCJVROUc3ts/\nqlAESIQCUAUUyPv5QwKKVe9d1Lvvvvu79/v7/iRVVREIBAKBQCAQCAQCweZF3ugGCAQCgUAgEAgE\nAoFgbYjATiAQCAQCgUAgEAg2OSKwEwgEAoFAIBAIBIJNjgjsBAKBQCAQCAQCgWCTIwI7gUAgEAgE\nAoFAINjkiMBOIBAIBAKBQCAQCDY5IrATCAQCgUAgEAgEgk2OCOwEAoFAIBAIBAKBYJMjAjuBQCAQ\nCAQCgUAg2ORoN7oBi+F0OtWenp6NboZgkzA2NoboL4JyEH1FsBJEfxGUi+grgpUg+ougXE6fPu1X\nVbWpnPfWbGDX09PDqVOnNroZgk3CsWPHRH+pMqlsHp1GRiNLG92UNSH6yu1PKptHr5GRK9BXRX+5\ns0hm8hh1MpK08r4j+kr1UBSVTF7BqNNsdFMqhugv60cqm0crS2g1m1OoKEnS9XLfW7OBnUAgqB0u\nTod57ZIHu1HH1+/uuq0eroLbi9PXA/z2qp8mm4Gv3rUF3SZ9kAvWn7cGvZybCNHdaOa5I50b3RxB\nkVxe4e9OTeCNpLl/u5O7eho2ukmCTcSQJ8rL/W4sBg2/e7wLq+H2Dn3EE08gECzLqC+OqkI4mcUf\nS290cwSCRRnxxgHwRdNEktkNbo1gMzHiiwFwfSZBNq9scGsEs0RTObyRwnNnxBvb4NYINhuj/jiK\nqhJN5fBEUhvdnKojAjuBQLAsR7vrcVr17Gy10VZn2ujmCASLcry3gQaLnv0ddTRY9BvdHMEm4p6t\njdSbddy9tUHs9NYQDrOOA52F+/l4r9itE6yMw1scOG0GtjZZ6Gowb3Rzqs7tvR95mxNP53jnqo9E\nJs/J7U5a7MaNbpLgNqXdYeJb9/aUfr8+E8ek19BsE31OUFv0OC30OC2r+mw2r3B9JkGL3YDNqKtw\nywS1zr6OOvZ11JX9fm80RTKTp7txdf1NUB6SJHGsu4HuxrT4rgWLksrmmQwm6HCYMelvpIs02418\n657uDWzZ+iICu03Ke0N+/vF/O0sgngFAr5H5l0/u4u+d6FlV0rdAUC5nxoO8c8WHLEl87fgWmsWC\nguA24ZUBNyPeGBaDhu+e6BW7NoJF8UZS/OiTCRRV5cGdTRzpqt/oJt22pLJ5fvjJOKlsnt1tdj67\nr3WjmySoQX52ZgpPJIXTqp+3EH2nIQK7TciHIzN85/ufsK3Jyn/6xhEcZh3//jdX+be/uoSqqvzB\nya0b3UTBbUw0lQNAUVVi6RzNG9wegaBSxIp9O5lRyCsqwiNIsBixdA5FVYEbY6KgOmTyCulcHih8\n7wLBQkRThZzqyB1+P4rAbpPhj6X5k789TY/Two//6F7qTAW50P/7zaP8yd+e4c9fvszhLgdHu4UO\nXVAd7u5tQFFVrAYtvauUvAkEtcjje1o4NxGip9EsnF8FS9LrtHD/diexdI67Rd5XVbEbdTyxt5XJ\nYJJj3WJnVLAwnz/QxqXpCLvb7BvdlA1FBHabjD9/6TKxdI4f//0bQR2ALEv8H185yIX/M8S/fL6f\nl/7x/Ri0YmIiqDxGnYaHd4p9OsHtR5PNwON7Wja6GYJNgCRJwnZ/HdndZr/jJ+yCpemsN9NZf/ub\noyyHSCDYRJybCPHzs1P80YPb2N5iu+XfrQYtf/bsPoa9Mf7u04kNaKFAIBAIBAKBQCDYCERgt4n4\nj28M4TDr+PsPblv0PQ/vbOZ4bwN/8eYwyUx+HVsnEAgEAoFAIBAINoqqBXaSJJklSXpJkqS3JUl6\nQZIkgyRJ/5ckSe9KkvQfqnXe25X+yTBvDnr53smtWA2LK2glSeJPP7MTXzTNf/t0fB1bKBAIBAKB\nQCAQCDaKau7YfRb4WFXVh4BPgP8BsKqqehLQS5J0VxXPfdvxV+9fw2rQ8u17l6/Fcby3gcNdDv7r\nB2MoiroOrRMIBAKBQCAQCAQbSTUDuxFg1jLPAajAa8XfXwfureK5bysC8Qwv9bt47khH2UVzv3Nf\nD2MzCd4Z8lW5dQKBQCAQCAQCgWCjqWZgNwTcK0nSReAYkAMixX8LUwj25iFJ0h9KknRKkqRTPp8I\nSGb56ekJMjmFb9y9/G7dLE/ua6PZZuCv3x+rXsMEAoFAIBAIBAJBTVDNwO73gF+qqroXeAnQAbNe\ntXYgdPMHVFX9S1VVj6mqeqypqamKTds8qKrKjz6Z4K6eena23uqEuRh6rczvHu/it0M+XOFkFVso\nEAgEAoFAIBAINppqBnYSECj+7C/+/9Hi/x8DPqriuW8bLkyGueaP8+WjW1b82d850omqws/OTFWh\nZQKBQCAQCAQCgaBWqGZg90PgK5IkvQ18A/gLICVJ0rtAXlXVT6p47tuGF89Po9fIPLGvdcWf7Wo0\nc7y3gedPT6KqwkRFIBAIBAKBQCC4XVncN3+NqKoaAp646eV/Uq3z3Y7kFZVfnp/moZ1N1JnKM025\nmd852sm/+OkFzoyHONpdX+EWCgQCgUAgEAgEglpAFCivYT6+NoM3muaLhzpWfYzP7W/DpNPw/JnJ\nCrZMINgYVFVlIpAgnMxudFM2HelcnvGZBJmcstFNEQjm4Q6nmImlN7oZgioQTmSZDCY2uhmC2wjR\np5ZGBHY1zIvnprHoNTy6u3nVx7AatDy6u5lXB9zk8mJCdydw2RXhk2uB23IC/+HIDD89PcnffHSd\naEoEdyvhp6cnef7MJL84W17OrSuc5INhP8F4psotE1SCeDrHByN+xvzxjW7Kirg0HeFHn4zzNx+N\nC6OvGmJgKsypscCa5g3hRJa/+fg6Pzk1ycejMxVsneBOJZzI8oOPxvjJqUk+uRZY/gNVRFFUzowH\nOTcRqql0p6pJMQVrQ1FUXrvk4dHdLRh1mjUd66kD7fzqgosPRmZ4YIdwG72dmQwmeHXADUAym+fB\nTXq9R3wxTo8F6WuxcqTrhoQ4kCgEGZmcQjydL7uuowBCiSzZvMJ7w37MBg2PLTG25BWVn52ZIpNT\nGPHH+dY95ZdaEWwMr1/2MOqLI0sS372/B/sa741oKsubg170GplHd7eg11ZnHThYvKcVVSWUyNJW\nZ6rKeQTlM+yN8dolDwCKCsd7G1Z1nGg6W1pgnL3O68Xp60FGvDHu6m2g12lZ/gOCqqGqKm9f8TET\nz/DQziacVsOqjxVJZcnmC0FUYIMXHfunwrxzpVCaTStL7Ouo29D2zCICuxrl/GSImXhmTbt1szy0\nswmrQcuvLkyLwO42RyvLSBKoKuhkaaObs2reueIjnMwyFUqyr72uNKk82deEVpZwWg201hk3uJWb\niyf3tfLi+WnqzTqGPDE6HCYOdy2cdysBmmL/2cz96E5CpyncI7IEsrT2a3Z+Isyor7D719VoZm97\ndSYtR7vrSWTyGHUyO1vKL+kjqB46zY3+o1nD/d9Zb+ZEn5NAPM19fc5KNK0sUtk8v71amHAnrnjp\ndfau27kFtzIZTHJuolDh7OPRAJ8/0LbqY21pMHPftkaCiSwn+hor1cRVoZ1zn8yOv7WACOxqlDcH\nvWhkqSI7Lkadhsf3tPDqgJs/e2Z/1VZeBRtPa52R5w53Ek1n2dVqX/4DNUq7w0Q4maXFbpw3yagz\n6/jsvtU/FO5ktjZZee5wJ784N4UESwbGsizxlWNbmAgk6Gu2rl8jBavm0d3NdNabaLEbsRrW/mhv\ncxiRpMJKdLOteosos88nQe3Q3Wjhi4faSecUdq2gfu5CrHa3by3oNTJNNgO+aJp2h9gB3mgaLHrM\neg2JTJ52x9rHkru3bmx
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7fd70d281b38>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"scatter_matrix(gene_df[matieres], alpha=0.5, figsize=(15, 15), diagonal='kde')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.4"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|