661 lines
62 KiB
Plaintext
661 lines
62 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Exploration des résultats des 302"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import sqlite3\n",
|
||
|
"import pandas as pd\n",
|
||
|
"import numpy as np\n",
|
||
|
"from math import ceil\n",
|
||
|
"import seaborn as sns\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"%matplotlib inline\n",
|
||
|
"from pprint import pprint"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"db = \"recopytex.db\"\n",
|
||
|
"conn = sqlite3.connect(db)\n",
|
||
|
"c = conn.cursor()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"tribe_name = \"302\""
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Id de la classe de 302"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"tribe_id = c.execute(\"SELECT id from tribe WHERE tribe.name == ?\", (tribe_name,)).fetchone()[0]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"1\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"print(tribe_id)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Evaluations disponibles"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"evals = c.execute(\"SELECT id, name from eval WHERE eval.tribe_id == ?\", (tribe_id,))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[(1, 'DS1 mise en jambe')]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"evals.fetchmany()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## DS 1 mise en jambre"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"eval_id = 1"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"questions_scores = pd.read_sql_query(\"SELECT student.name, student.surname, score.value, question.competence\\\n",
|
||
|
" FROM score\\\n",
|
||
|
" JOIN question ON score.question_id==question.id \\\n",
|
||
|
" JOIN exercise ON question.exercise_id==exercise.id \\\n",
|
||
|
" JOIN eval ON exercise.eval_id==eval.id \\\n",
|
||
|
" JOIN student ON score.student_id==student.id\\\n",
|
||
|
" WHERE eval.id == (?)\",\n",
|
||
|
" conn,\n",
|
||
|
" params = (eval_id,))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"questions_scores = questions_scores[questions_scores[\"value\"]!='']"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def note2score(x):\n",
|
||
|
" if x[\"value\"] == '.':\n",
|
||
|
" return 0\n",
|
||
|
" if x[\"value\"] not in [0, 1, 2, 3]:\n",
|
||
|
" raise ValueError(f\"The evaluation is out of range: {x['value']} at {x}\")\n",
|
||
|
" return x[\"value\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"questions_scores[\"score\"] = questions_scores.apply(note2score, axis=1)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style>\n",
|
||
|
" .dataframe thead tr:only-child th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: left;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>name</th>\n",
|
||
|
" <th>surname</th>\n",
|
||
|
" <th>value</th>\n",
|
||
|
" <th>competence</th>\n",
|
||
|
" <th>score</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDALLAH ALLAOUI</td>\n",
|
||
|
" <td>Taiassima</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>Cher</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDALLAH ALLAOUI</td>\n",
|
||
|
" <td>Taiassima</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABDALLAH ALLAOUI</td>\n",
|
||
|
" <td>Taiassima</td>\n",
|
||
|
" <td>.</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>ADANI</td>\n",
|
||
|
" <td>Ismou</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>Cher</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>ADANI</td>\n",
|
||
|
" <td>Ismou</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" name surname value competence score\n",
|
||
|
"0 ABDALLAH ALLAOUI Taiassima 1 Cher 1\n",
|
||
|
"1 ABDALLAH ALLAOUI Taiassima 2 Cal 2\n",
|
||
|
"2 ABDALLAH ALLAOUI Taiassima . Cal 0\n",
|
||
|
"3 ADANI Ismou 2 Cher 2\n",
|
||
|
"4 ADANI Ismou 2 Cal 2"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"questions_scores.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"questions_scores[\"fullname\"] = questions_scores[\"name\"] + \" \" + questions_scores[\"surname\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def score_mean(x):\n",
|
||
|
" mean = np.mean(x)\n",
|
||
|
" return round(mean, 0)\n",
|
||
|
"\n",
|
||
|
"score_mean.__name__ = \"Moyenne discrète\""
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"report_comp = pd.pivot_table(questions_scores,\n",
|
||
|
" index=[\"fullname\"],\n",
|
||
|
" columns = ['competence'],\n",
|
||
|
" values = [\"score\"],\n",
|
||
|
" aggfunc = [score_mean])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Applatissement du nom des colonnes"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"report_comp.columns = report_comp.columns.levels[-1]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style>\n",
|
||
|
" .dataframe thead tr:only-child th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: left;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th>competence</th>\n",
|
||
|
" <th>Cal</th>\n",
|
||
|
" <th>Cher</th>\n",
|
||
|
" <th>Com</th>\n",
|
||
|
" <th>Rai</th>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>fullname</th>\n",
|
||
|
" <th></th>\n",
|
||
|
" <th></th>\n",
|
||
|
" <th></th>\n",
|
||
|
" <th></th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>ABDALLAH ALLAOUI Taiassima</th>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>ADANI Ismou</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>AHAMADA Dhoulkamal</th>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>AHAMADI Asbahati</th>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>AHAMADI OUSSENI Ansufiddine</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>AHAMED Fayadhi</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>AHMED SAID Hadaïta</th>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>ALI MADI Anissa</th>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>ALI Raydel</th>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>ATTOUMANE ALI Fatima</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>BACHIROU Elzame</th>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>BINALI Zalida</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>BOINA Abdillah Mze Limassi</th>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>BOUDRA Zaankidine</th>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>HALADI Asna</th>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>HALIDI Soibrata</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>HAMEDALY Doulkifly</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>IBRAHIM Nassur</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>INOUSSA Anchoura</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>MOHAMED Nadia</th>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>MOUHOUDHOIRE Izak</th>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>MOUSSRI Bakari</th>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>SAKOTRA Claudiana</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>SAÏD Fatoumia</th>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>TOUFAIL Salahou</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"competence Cal Cher Com Rai\n",
|
||
|
"fullname \n",
|
||
|
"ABDALLAH ALLAOUI Taiassima 2 2 2 2\n",
|
||
|
"ADANI Ismou 1 2 1 2\n",
|
||
|
"AHAMADA Dhoulkamal 0 3 1 0\n",
|
||
|
"AHAMADI Asbahati 3 3 3 3\n",
|
||
|
"AHAMADI OUSSENI Ansufiddine 1 1 1 0\n",
|
||
|
"AHAMED Fayadhi 1 3 2 1\n",
|
||
|
"AHMED SAID Hadaïta 2 3 3 3\n",
|
||
|
"ALI MADI Anissa 2 3 2 3\n",
|
||
|
"ALI Raydel 3 2 2 2\n",
|
||
|
"ATTOUMANE ALI Fatima 1 1 0 0\n",
|
||
|
"BACHIROU Elzame 0 2 1 0\n",
|
||
|
"BINALI Zalida 1 2 2 0\n",
|
||
|
"BOINA Abdillah Mze Limassi 2 2 2 3\n",
|
||
|
"BOUDRA Zaankidine 0 0 0 0\n",
|
||
|
"HALADI Asna 2 3 3 3\n",
|
||
|
"HALIDI Soibrata 1 2 2 0\n",
|
||
|
"HAMEDALY Doulkifly 1 0 1 1\n",
|
||
|
"IBRAHIM Nassur 1 2 1 1\n",
|
||
|
"INOUSSA Anchoura 1 2 2 2\n",
|
||
|
"MOHAMED Nadia 0 1 0 0\n",
|
||
|
"MOUHOUDHOIRE Izak 0 1 0 0\n",
|
||
|
"MOUSSRI Bakari 0 2 1 1\n",
|
||
|
"SAKOTRA Claudiana 1 0 1 0\n",
|
||
|
"SAÏD Fatoumia 2 3 2 3\n",
|
||
|
"TOUFAIL Salahou 1 2 3 3"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"report_comp"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 32,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAJeCAYAAABPvThsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm81GXd//HXGzRBcddMDTlFCqUom5YF/MClvEsDDYUT\nLZZ35H1bZqUtd4vYquVdubShpWYk3oUb1W2aSEC5sC+KoAiZZrncbiiawuf3x/ca/TrMnJlz5pwZ\nDvN+Ph7zmJnre32v6/rOnOUzn7m+11cRgZmZmZmZldej0QMwMzMzM9vSOWg2MzMzM6vAQbOZmZmZ\nWQUOms3MzMzMKnDQbGZmZmZWgYNmMzMzM7MKHDSbdROSXidpuqQ1khZK+r2kA9qov76e47NXK/N+\nTZb020aPzSpr7++bbZkkbZS0RNIKSTMl7VLFPn+px9is+3HQbNYNSBJwLTA7IvpHxDDgi8BejR2Z\nldJV75ekbTpjfNY2/75tVTZExOCIOAj4P+C0SjtExNu7fljWHTloNusexgAvRsRPCgURsRRYLOkW\nSYskLZc0tnFDtJxy79dcoI+k30i6R9K0FKAhaZikP6Ws5h8k7Z3KZ0v6gaQFwKcacTBNqNz7N0/S\nd1PWcrmkCQCSRqf37npJ90s6V9IkSXemev0bdSD2KrcB+wJI6lPub6e/pbNynLUw6x4OAhaWKH8e\nOD4inpa0B3C7pBvCl/pstHLvF8AQ4EDg78CfgXdIugO4CBgbEY+mYOybwEfTPq+JiOFdPGZ7Rbn3\n7wRgMHAIsAcwX9KctO0Q4M1k2cz7gUsj4jBJnwI+CZzR5aO2siT1BI4EfpaK/LfT2s1Bs1n3JuBb\nkkYBm8iyKHsB/2joqKwtd0bEgwCSlgAtwJNkgdrNKfHcE3g4t8/VdR6jlTYCuCoiNgL/lPQn4FDg\naWB+RDwMIGkNcFPaZzlZ5toao3f6PdsXWAncnMr9t9PazdMzzLqHu4BhJconAXsCwyJiMPBPoFc9\nB2YllXu/AF7IPd5IlrwQcFeaezk4IgZFxDtz9Z7tonFaaW29f+Xk39dNueebcIKqkTakv439yH7P\nCnOa/bfT2s1Bs1n3MAvYTtLkQoGkg8n+ETwSES9KGpOeW+OVe79Glqm/CthT0uGp7raSDuz6YVoZ\n5d6/J4EJknpK2hMYBdzZoDFaO0TEc8DpwGfTCbU747+d1k4Oms26gTTP7njgqLQE1l3At4HfA8Ml\nLQc+BNzTwGFa0sb7VfKr34j4FzAeOE/SUmAJ4DP4G6SN9+9XwDJgKVlg/bmI8Nf53URELCZ7/1qB\nafhvp7WTPOfdzMzMzKxtzjSbmZmZmVXgoNnMzMzMrAIHzWZmZmZmFThoNjMzMzOrwEGzmZmZmW01\nJPVKl7FfKukuSeeUqLOdpKsl3SfpDkktldp10GxmZmZmW5MXgCMi4hBgMHCMpLcV1TkFeCIi3gR8\nHzivUqMOms3MzMxsqxGZ9enptulWvMbyWOCK9Pg3wJGS1Fa7DprNzMzMbKuSrty5BHgEuDki7iiq\nsi/wN4CIeAl4Cti9rTa36YqBmm2BfBUfMzNrJm1mTTvbORpQt/+zU1j9cWByrmhqREzN14mIjcBg\nSbsA10o6KCJW1NKvg2ZrCs+OOqDRQ7AO2GHOasDvX3fl969722HOar933VThd29rlQLkqRUrZnWf\nlHQrcAyQD5ofAvoCD0raBtgZeLyttjw9w8zMzMy2GpL2TBlmJPUGjgbuKap2A/Dh9Hg8MCsi2syW\nO9NsZmZmZjXZwrKwewNXSOpJNrT/iYjfSvoasCAibgB+Blwp6T7g/4CJlRp10GxmZmZmW42IWAYM\nKVH+1dzj54ET29Oug2YzMzMzq8kWlmnuEs1wjGZmZmZmNal70CxpnKSQNDBX1iJpg6Ql6ZKHf5E0\nIG0bLekpSYslrZI0R9KxJdpdIml6UdnlksYXlbVIKrnkiKRtJD0q6dyi8tmShlfTRtp+hqTnJe2c\nKxst6bcl6r6q7aJtP5D0kKQeReXjJC2TtFLScknjqhlrqTFIeld67ZZIWp9e4yWSftHG8fWVdHW5\n7e0l6ZuSxnRWe2ZmZlZfPep4a5RG9N0KzEv3eWsiYnC65OEVwH/lts2NiCERMQA4HbhY0pGFjZLe\nDPQERkraoYaxHQ2sBk6sdFWYClqB+cAJHW0gBcrHky28/f9y5YcA5wNjI+LNwHuB8yUd3JF+IuIP\n6XUfDCwAJqXnH2pjn79FxISO9FemvS9FxK2d1Z6ZmZlZZ6tr0CypDzCC7HrfbZ2luBPwRKkNEbEE\n+BrwiVxxK3AlcBPZZRE7qhW4AHgAOLwjDUjqD/QBvszmHwzaYzRwF/DjonbOBL4VEWsB0v23gbNq\n6KskSf0lzU1Z/oWS3prK35SustNWnX0lzUtZ6xWS3p4y+Vem7PgKSaenur8sZMslPSjpW+kbh/mS\nhkq6SdIaSR9LdXaSNEvSopRx3+ybBzMzM6ufZsg01/tEwLHAjRGxWtLjkoZFxMK0rX8KxHYEtgfe\n2kY7i3h1kDiBLEs8EPgk8Kv2DkxSL+Ao4OPALmSB6l9yVaZJ2pAevwbYVKapicB0YC4wQNJeEfHP\n9o4n9X8VcD3wLUnbRsSLwIFkmea8BcBpHeijkoeBoyPi+TSd5go2f1/K1fkAMDMizktLvvQGhgF7\nRMQggMIaiiWsjYhDJF1EtiTMCLIPIkuBS4ANwLiIeFrSa4E/A5tNfTEzMzPrLPUO2FvJAkrSfT6D\nWpie0R84g7av9PLy1Ik0f/exiHgAuAUYImm3DoztWODWiNgAzADGpWCvYFJuGsO722inFZgeEZtS\nO+1azgRA0mtSH9dFxNPAHcC7qty91MLcHb205XbAz9Kc6OnAW9pRZz7w75LOBg6KiPXAfWQfJC6U\n9C6y67yXckO6Xw7cHhHPpg8em9K3FQLOlbSM7NuFvpL2KG5E0mRJCyQt+PnD5boyMzOzWjVDprlu\nfadA9gjgUknryDLFJ5WZO3wDMKqN5oYAK9PjVmBganMN2dSO93VgiK3AUamdhcDuabxVkzQI2B+4\nObUzkY5N0XgXWbZ7eWpnRK6du8kytnnDyKZyQHYJyF1z23YDHuvAGAA+SzanehBwGFmAXFWdiJhF\nNsXkYeAXkiZFxOPAwWRZ+NOAn5bp94V0vyn3uPB8G+BDZJe7HJo+xDwG9CpuJCKmRsTwiBj+0b13\nLt5sZmZmVrV6BuzjgSsjol9EtEREX2AtMLJE3RFkAfBm0glvXwF+mE6WOwkYlNpsIZsC0q5AVdJO\naRz75do5rb3tpPpTCm1ExD7APpL6daCdf8+N5Q3A0ZK2J5ua8UVJLWnsLWQnTf532nc28IHch5EP\nAx09yW5n4OF0WckPk8vwV6qTjvkf6frwl5F9A7AnoIj4NfBVYGgN43okIl6SdDSwbwfbMTMzs06g\nOt4apZ5zmluB84rKZuTKC3OaBfwL+PdcvZGSFpPNdX4EOD0ibpH0/4CHIuLvubpzgLdI2js9/6mk\nH6THf0v9DZD0YG6fL5Fdczyf1bwe+I6kUtnVciay+dSNa1P5HcCRRf0Wpm78TtKL6fFtwJHAqYVK\nEfGspHnAcRFxtaTPAzMlbQu8CHwunSAJ2bSWgcBSSUE23/mL7TiGvIuB30j6KPA7Xp31rVTnSOAz\n6bieAT4I9CWbyiGyKSOf7+C4riQ7/uXAncC9HWzHzMzMrCrKEoRmW7dnRx3gH/RuaIc5qwF4dtQB\nDR6JdYTfv+5thzmr/d51U+l3r65J2fM1oG7/Z8+MVQ1JOPsy2mZmZmZWk2a4xHQzHKOZmZmZWU2c\naTYzMzOzmjRDFrYZjtHMzMzMrCbONJuZmZlZTZohC+vVM6xZ+AfdzMyaSV1XmLiwjqtnnO7VM8zM\nzMysO2qGTLODZmsKMXtSo4dgHaDR0wCv89tdFdZp9u9f96TR0/y7100VfvesczloNjMzM7OaNEOm\nuRmO0czMzMysJs40m5m
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f528777cc88>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plt.figure(figsize=(10, 10))\n",
|
||
|
"ax = sns.heatmap(report_comp, cmap='YlOrRd', linewidths=.5)\n",
|
||
|
"ax.tick_params(labelbottom='on',labeltop='on')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.2"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|