E3 sur les stats des poissons pour les 302

This commit is contained in:
Bertrand Benjamin 2018-03-19 11:01:29 +03:00
parent fc242187fe
commit 33f30794e0
3 changed files with 243 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,92 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\usepackage{multirow}
\title{EPI Lagon}
\tribe{Troisième}
\date{Mars 2018}
%\geometry{left=15mm,right=15mm, bottom= 10mm, top=10mm}
\pagestyle{empty}
\begin{document}
\begin{exercise}[subtitle={Le mérou\Cal \Rep}]
Voici les relevés (fictifs) de la taille et du poids de méroux.
\begin{minipage}{0.3\textwidth}
\begin{tabular}{|c|c|}
\hline
Taille (en cm) & Poids (en kg) \\
\hline
9.11 & 81.0 \\
\hline
9.66 & 78.0 \\
\hline
9.55 & 80.0 \\
\hline
7.87 & 79.0 \\
\hline
8.24 & 64.0 \\
\hline
\end{tabular}
\end{minipage}
\begin{minipage}{0.3\textwidth}
\begin{tabular}{|c|c|}
\hline
Taille (en cm) & Poids (en kg) \\
\hline
5.46 & 50.0 \\
\hline
5.89 & 56.0 \\
\hline
7.9 & 78.0 \\
\hline
6.98 & 75.0 \\
\hline
5.37 & 49.0 \\
\hline
\end{tabular}
\end{minipage}
\begin{minipage}{0.3\textwidth}
\begin{tabular}{|c|c|}
\hline
Taille (en cm) & Poids (en kg) \\
\hline
6.03 & 53.0 \\
\hline
7.29 & 63.0 \\
\hline
3.98 & 38.0 \\
\hline
6.08 & 40.0 \\
\hline
7.02 & 69.0 \\
\hline
\end{tabular}
\end{minipage}
\begin{enumerate}
\item Pour la taille, calculer la moyenne, l'étendue et la médiane de ces données.
\item Même question pour le poids.
\item Pensez vous que d'après ces données, le poids du poisson est proportionnel à sa taille?
\end{enumerate}
\end{exercise}
\vfill
\printexercise{exercise}{1}
\vfill
\printexercise{exercise}{1}
\vfill
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End:

View File

@ -0,0 +1,151 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Création de données sur la taille des poissons"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"d = np.random.normal(60, 15, 15)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"d = d.astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"w = [round(l/9+np.random.normal(),2) for l in d]"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"dt = {\"Taille\": d,\n",
" \"Poids\": w}"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(dt)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"9.11 & 81.0 \\\\\n",
"\\hline\n",
"9.66 & 78.0 \\\\\n",
"\\hline\n",
"9.55 & 80.0 \\\\\n",
"\\hline\n",
"7.87 & 79.0 \\\\\n",
"\\hline\n",
"8.24 & 64.0 \\\\\n",
"\\hline\n",
"5.46 & 50.0 \\\\\n",
"\\hline\n",
"5.89 & 56.0 \\\\\n",
"\\hline\n",
"7.9 & 78.0 \\\\\n",
"\\hline\n",
"6.98 & 75.0 \\\\\n",
"\\hline\n",
"5.37 & 49.0 \\\\\n",
"\\hline\n",
"6.03 & 53.0 \\\\\n",
"\\hline\n",
"7.29 & 63.0 \\\\\n",
"\\hline\n",
"3.98 & 38.0 \\\\\n",
"\\hline\n",
"6.08 & 40.0 \\\\\n",
"\\hline\n",
"7.02 & 69.0 \\\\\n",
"\\hline\n"
]
}
],
"source": [
"for d in df.values:\n",
" print(f\"{d[0]} & {d[1]} \\\\\\\\\")\n",
" print(\"\\\\hline\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}