152 lines
2.7 KiB
Plaintext
152 lines
2.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Création de données sur la taille des poissons"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"d = np.random.normal(60, 15, 15)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"d = d.astype(int)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"w = [round(l/9+np.random.normal(),2) for l in d]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 27,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dt = {\"Taille\": d,\n",
|
|
" \"Poids\": w}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df = pd.DataFrame(dt)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 36,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"9.11 & 81.0 \\\\\n",
|
|
"\\hline\n",
|
|
"9.66 & 78.0 \\\\\n",
|
|
"\\hline\n",
|
|
"9.55 & 80.0 \\\\\n",
|
|
"\\hline\n",
|
|
"7.87 & 79.0 \\\\\n",
|
|
"\\hline\n",
|
|
"8.24 & 64.0 \\\\\n",
|
|
"\\hline\n",
|
|
"5.46 & 50.0 \\\\\n",
|
|
"\\hline\n",
|
|
"5.89 & 56.0 \\\\\n",
|
|
"\\hline\n",
|
|
"7.9 & 78.0 \\\\\n",
|
|
"\\hline\n",
|
|
"6.98 & 75.0 \\\\\n",
|
|
"\\hline\n",
|
|
"5.37 & 49.0 \\\\\n",
|
|
"\\hline\n",
|
|
"6.03 & 53.0 \\\\\n",
|
|
"\\hline\n",
|
|
"7.29 & 63.0 \\\\\n",
|
|
"\\hline\n",
|
|
"3.98 & 38.0 \\\\\n",
|
|
"\\hline\n",
|
|
"6.08 & 40.0 \\\\\n",
|
|
"\\hline\n",
|
|
"7.02 & 69.0 \\\\\n",
|
|
"\\hline\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"for d in df.values:\n",
|
|
" print(f\"{d[0]} & {d[1]} \\\\\\\\\")\n",
|
|
" print(\"\\\\hline\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|