diff --git a/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-1.pdf b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-1.pdf new file mode 100644 index 0000000..8ec021a Binary files /dev/null and b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-1.pdf differ diff --git a/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-1.tex b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-1.tex new file mode 100755 index 0000000..5327a01 --- /dev/null +++ b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-1.tex @@ -0,0 +1,71 @@ +\documentclass[a4paper,10pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \huge 30 secondes par calcul + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + \huge + Position de $A$ + + \begin{center} + \begin{tikzpicture}[scale=0.8] + \filldraw[very thick, ->] (-3.3,0) -- (3.3,0); + \filldraw[very thick, ->] (0,-3.3) -- (0,3.3); + \draw[step=1] (-3,-3) grid (3,3); + + \draw (2, 1) node {x} node[above left] {$A$}; + + \foreach \x in {-3,...,3} {% + \draw (\x, 0) node[below] {\small \x}; + \draw (0, \x) node[left ] {\small \x}; + } + \end{tikzpicture} + + \end{center} +\end{frame} + +\begin{frame}{Calcul 2} + \huge + Si $x = 2$, alors + \[ + 3x + 5 = + \] +\end{frame} + +\begin{frame}{Calcul 3} + \huge + \[ + -5 + 3 = + \] +\end{frame} + +\begin{frame}{Calcul 4} + \huge + Combien vaut les $\dfrac{3}{5}$ de 10? + \begin{center} + \begin{tikzpicture}[scale=2] + \foreach \x in {1,...,5} {% + \draw (\x,0) circle (0.4cm) node {\icon{cursed-star}}; + \draw (\x,1) circle (0.4cm) node {\icon{cursed-star}}; + } + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}{Fin} + \begin{center} + \huge On retourne son papier. + \end{center} +\end{frame} + + +\end{document} diff --git a/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-2.pdf b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-2.pdf new file mode 100644 index 0000000..783b677 Binary files /dev/null and b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-2.pdf differ diff --git a/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-2.tex b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-2.tex new file mode 100755 index 0000000..2eee994 --- /dev/null +++ b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-2.tex @@ -0,0 +1,63 @@ +\documentclass[a4paper,10pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \huge 30 secondes par calcul + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + \huge + Position de $A$ + + \begin{center} + \begin{tikzpicture}[scale=0.8] + \filldraw[very thick, ->] (-3.3,0) -- (3.3,0); + \filldraw[very thick, ->] (0,-3.3) -- (0,3.3); + \draw[step=1] (-3,-3) grid (3,3); + + \draw (-2, 1) node {x} node[above left] {$A$}; + + \foreach \x in {-3,...,3} {% + \draw (\x, 0) node[below] {\small \x}; + \draw (0, \x) node[left ] {\small \x}; + } + \end{tikzpicture} + + \end{center} +\end{frame} + +\begin{frame}{Calcul 2} + \huge + Si $x = 3$, alors + \[ + 5 + 6x = + \] +\end{frame} + +\begin{frame}{Calcul 3} + \huge + \[ + -4 + 5 = + \] +\end{frame} + +\begin{frame}{Calcul 4} + \huge + Combien vaut les $\dfrac{1}{3}$ de 12? +\end{frame} + +\begin{frame}{Fin} + \begin{center} + \huge On retourne son papier. + \end{center} +\end{frame} + + +\end{document} diff --git a/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-3.pdf b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-3.pdf new file mode 100644 index 0000000..4b446ee Binary files /dev/null and b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-3.pdf differ diff --git a/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-3.tex b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-3.tex new file mode 100755 index 0000000..9c80ff9 --- /dev/null +++ b/StLaurentGrandvaux/5e/Questions_Flashs/QF_19_05_27-3.tex @@ -0,0 +1,71 @@ +\documentclass[a4paper,10pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \huge 30 secondes par calcul + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + \huge + Position de $A$ + + \begin{center} + \begin{tikzpicture}[scale=0.8] + \filldraw[very thick, ->] (-3.3,0) -- (3.3,0); + \filldraw[very thick, ->] (0,-3.3) -- (0,3.3); + \draw[step=1] (-3,-3) grid (3,3); + + \draw (2, -1) node {x} node[above left] {$A$}; + + \foreach \x in {-3,...,3} {% + \draw (\x, 0) node[below] {\small \x}; + \draw (0, \x) node[left ] {\small \x}; + } + \end{tikzpicture} + + \end{center} +\end{frame} + +\begin{frame}{Calcul 2} + \huge + Si $x = 5$, alors + \[ + 2 + 4x = + \] +\end{frame} + +\begin{frame}{Calcul 3} + \huge + \[ + -3 + 5 = + \] +\end{frame} + +\begin{frame}{Calcul 4} + \huge + Combien vaut les $\dfrac{3}{4}$ de 12? + \begin{center} + \begin{tikzpicture}[scale=2] + \foreach \x in {1,...,6} {% + \draw (\x,0) circle (0.4cm) node {\icon{cursed-star}}; + \draw (\x,1) circle (0.4cm) node {\icon{cursed-star}}; + } + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}{Fin} + \begin{center} + \huge On retourne son papier. + \end{center} +\end{frame} + + +\end{document}