Flash for all
This commit is contained in:
parent
888a8276c9
commit
f5fbffe571
BIN
PreStSauveur/1S/Flash/F_18_09_12-3.pdf
Normal file
BIN
PreStSauveur/1S/Flash/F_18_09_12-3.pdf
Normal file
Binary file not shown.
36
PreStSauveur/1S/Flash/F_18_09_12-3.tex
Executable file
36
PreStSauveur/1S/Flash/F_18_09_12-3.tex
Executable file
@ -0,0 +1,36 @@
|
|||||||
|
\documentclass[a4paper,12pt]{classPres}
|
||||||
|
\usepackage{tkz-fct}
|
||||||
|
|
||||||
|
\author{}
|
||||||
|
\title{}
|
||||||
|
\date{}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\begin{frame}{Questions flashs}
|
||||||
|
Développer et réduire l'expression
|
||||||
|
\[ f(x) = (\sqrt{x} - 1)^2 -2\]
|
||||||
|
Mettre sous forme canonique
|
||||||
|
\[ g(x) = x(x - \frac{1}{2}) - \frac{1}{2}\]
|
||||||
|
\textbf{Bonus:} Combien de y a-t-il de solution aux équations suivantes?
|
||||||
|
\[ f(x) = 0 \mbox{ et } g(x) = 0 \]
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Graphique de la fonction $f$}
|
||||||
|
\begin{tikzpicture}[scale=0.7]
|
||||||
|
\tkzInit[xmin=-1,xmax=10,ymin=-5, ymax=5]
|
||||||
|
\tkzGrid
|
||||||
|
\tkzAxeXY
|
||||||
|
\tkzFct[color=red, very thick]{(sqrt(x)-1)**2-2}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Graphique de la fonction $g$}
|
||||||
|
\begin{tikzpicture}[scale=1]
|
||||||
|
\tkzInit[xmin=-3,xmax=3,ymin=-3, ymax=3]
|
||||||
|
\tkzGrid
|
||||||
|
\tkzAxeXY
|
||||||
|
\tkzFct[color=red, very thick]{x*(x-0.5)-0.5}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\end{document}
|
BIN
PreStSauveur/TESL/Flash/F_18_09_10-2.pdf
Normal file
BIN
PreStSauveur/TESL/Flash/F_18_09_10-2.pdf
Normal file
Binary file not shown.
16
PreStSauveur/TESL/Flash/F_18_09_10-2.tex
Executable file
16
PreStSauveur/TESL/Flash/F_18_09_10-2.tex
Executable file
@ -0,0 +1,16 @@
|
|||||||
|
\documentclass[a4paper,12pt]{classPres}
|
||||||
|
\usepackage{tkz-fct}
|
||||||
|
|
||||||
|
\author{}
|
||||||
|
\title{}
|
||||||
|
\date{}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\begin{frame}{Questions flashs}
|
||||||
|
Développer et réduire l'expression
|
||||||
|
\[ A = (\sqrt{x} + 2)^2 \]
|
||||||
|
Résoudre l'inéquation
|
||||||
|
\[ -4x^2 + 9 > 0 \]
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\end{document}
|
BIN
PreStSauveur/Tsti2d/Flash/F_18_09_10-1.pdf
Normal file
BIN
PreStSauveur/Tsti2d/Flash/F_18_09_10-1.pdf
Normal file
Binary file not shown.
16
PreStSauveur/Tsti2d/Flash/F_18_09_10-1.tex
Executable file
16
PreStSauveur/Tsti2d/Flash/F_18_09_10-1.tex
Executable file
@ -0,0 +1,16 @@
|
|||||||
|
\documentclass[a4paper,12pt]{classPres}
|
||||||
|
\usepackage{tkz-fct}
|
||||||
|
|
||||||
|
\author{}
|
||||||
|
\title{}
|
||||||
|
\date{}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\begin{frame}{Questions flashs}
|
||||||
|
Calculer $u_1$ et $u_5$ pour les 2 suites ci-dessous
|
||||||
|
\[ u_n = 6\times 3^n \]
|
||||||
|
\[ u_{n+1} = u_n + 8 \mbox{ et } u_0 = 2 \]
|
||||||
|
Quelle est la nature de chacune de ces 2 suites. Préciser les éléments caractéristiques.
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user