Update memo and start statistical studies

This commit is contained in:
Bertrand Benjamin 2019-04-01 18:44:00 +02:00
parent f6e3d426cb
commit f88d603293
5 changed files with 1392 additions and 49 deletions

View File

@ -1212,7 +1212,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.1" "version": "3.7.3"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@ -342,7 +342,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.2" "version": "3.7.3"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@ -0,0 +1,200 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Etudes statistiques\n",
"\n",
"Dans ce TP, vous allez réaliser 3 études statistiques basées sur des données issues de l'INSEE ([LInstitut national de la statistique et des études économiques](https://www.insee.fr/fr/accueil))\n",
"\n",
"- [Températures moyennes entre 1900 et 2017](#Temperature)\n",
"- [Population totale par sexe et âge au 1er janvier 2019, France](#Population)\n",
"- [Émissions de gaz à effet de serre dans l'UE ](#Gaz--%C3%A0-effet-de-serre)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Temperature\n",
"\n",
"Voici les données des températures moyenne en France de 1900 à 2017 ([source](https://www.insee.fr/fr/statistiques/3676581?sommaire=3696937))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"temperature = [\n",
"12.14413, 11.11613, 11.18313, 11.48013, 11.93013, 11.22013, 11.75313, 11.44013,\n",
"11.35113, 10.82313, 11.37413, 12.32013, 11.37913, 11.89413, 11.48813, 11.43513,\n",
"11.59413, 10.57213, 11.64313, 11.09013, 11.83913, 12.42113, 11.11913, 11.71713,\n",
"11.43513, 11.16313, 12.10113, 11.67313, 12.27613, 11.56013, 12.16513, 11.19613,\n",
"11.54013, 11.59013, 12.20913, 11.72313, 11.77113, 12.28713, 11.73213, 11.51313,\n",
"10.85413, 10.87613, 11.43513, 12.52613, 11.41213, 12.37413, 11.47213, 12.59313,\n",
"12.11813, 12.62013, 12.03913, 11.69713, 11.85613, 11.85013, 11.34113, 11.84213,\n",
"10.58113, 11.84313, 11.77313, 12.59413, 11.79813, 12.58413, 11.03513, 10.68313,\n",
"11.71513, 11.29313, 12.02013, 11.92813, 11.59013, 11.57513, 11.66613, 11.57613,\n",
"11.34313, 11.62213, 11.89313, 11.77913, 12.08513, 11.88713, 11.38613, 11.59513,\n",
"11.16713, 11.91113, 12.63613, 12.36213, 11.61013, 11.34313, 11.64413, 11.65413,\n",
"12.46513, 12.95013, 12.99913, 11.99113, 12.31813, 12.04713, 13.29813, 12.83713,\n",
"11.85613, 13.12113, 12.53113, 12.99513, 13.12313, 12.76313, 13.14513, 13.48113,\n",
"12.59113, 12.58813, 13.23913, 12.91113, 12.54513, 12.96413, 11.86613, 13.60113,\n",
"12.79113, 12.38113, 13.72713, 13.512, 13, 13.4\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour toutes les questions suivantes, les réponses doivent être données par votre programme.\n",
"\n",
"1. Décrire la série statistique (population, individus, caractère)\n",
"2. Quelle a été la température moyenne en 1900, 1918, 1945, 1990 et en 2000?\n",
"3. Calculer les 5 indicateurs et donner une interprétation de chacun de ces indicateurs.\n",
"4. Tracer la courbe d'évolution des températures.\n",
"\n",
"Vous pouvez utiliser la commande suivante pour générer les années."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"annee = list(range(1900, 2018))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Population\n",
"\n",
"Voici l'estimation de la population totale par sexe et âge au 1er janvier 2019. Chaque élément de la liste correspond à une tranche d'age.\n",
"\n",
"- le premier élément correspond au nombre de personnes ayant 0 an (nés en 2018)\n",
"- le deuxime élément correspond au nombre de personnes ayant 1 an (nés en 2019)\n",
"- le dernier élément correspon au nombre de personnes ayant plus de 100ans (nés avant 1918)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"femmes = [\n",
"347749, 355472, 363162, 372402, 387042, 389920, 396835, 403349, 412555, 408232,\n",
"410703, 408166, 415280, 405218, 403761, 402532, 403441, 409037, 412560, 390002,\n",
"384532, 370258, 374177, 367951, 358614, 357966, 376224, 385366, 397080, 405038,\n",
"409842, 413955, 422167, 420790, 417815, 414133, 438390, 442482, 448307, 424441,\n",
"414208, 413671, 404350, 413722, 435157, 460384, 469527, 466462, 457896, 452879,\n",
"450472, 447421, 457665, 459310, 464153, 460412, 445047, 444896, 444709, 442263,\n",
"433635, 430912, 427893, 424094, 421875, 413428, 418007, 408050, 422019, 413673,\n",
"409072, 400876, 378561, 286325, 279055, 269401, 249057, 221914, 231318, 239598,\n",
"232663, 226088, 222853, 213902, 210980, 195596, 192550, 175872, 164803, 139226,\n",
"124322, 105456, 91072, 76447, 61235, 48398, 37882, 27754, 19813, 8273, 12670\n",
"]\n",
"hommes = [\n",
"364155, 370453, 378518, 387906, 399232, 407611, 417471, 418623,\n",
"429919, 427917, 430934, 426744, 433073, 424141, 422877, 422127,\n",
"423901, 431086, 433377, 410714, 398993, 384384, 381869, 371731,\n",
"357849, 356195, 373660, 377772, 384835, 385034, 390899, 392786,\n",
"397979, 398786, 396435, 391214, 416777, 421707, 427643, 405581,\n",
"399149, 404816, 390441, 404346, 426173, 448213, 459886, 457822,\n",
"448697, 441572, 434971, 432749, 441979, 442828, 444960, 438142,\n",
"422099, 421161, 416331, 410415, 400042, 395817, 390345, 382395,\n",
"381146, 371165, 374781, 364694, 374817, 364312, 361485, 350179,\n",
"327085, 242793, 234112, 224687, 204674, 177799, 179151, 182015,\n",
"171854, 160969, 153145, 139041, 131872, 116712, 108339, 95104,\n",
"83373, 66602, 55382, 44797, 34519, 27317, 20525, 14477,\n",
"10101, 7239, 4977, 2058, 2976,\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Décrire les séries statistiques (population, individues, caractères)\n",
"\n",
"2. Combien y a-t-il d'homme en tout? De femmes? De personnes?\n",
"\n",
"3. Sur un même graphique tracer la répartition en fonction de l'age de la population féminine et masculine.\n",
"\n",
"4. Pour comparer la **répartition** de la population les **quantités** ne sont pas adapté, on préfèrera la **fréquence** (effectif divisé par l'effectif total). Créer 2 autres listes pour calculer la fréquence de chaque classe d'age pour les hommes et les femmes. Tracer à nouveau la répartition selon les ages.\n",
"\n",
"5. Calculer les 5 indicateurs pour les 2 séries. Interpréter."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Gaz à effet de serre\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"emmissions_1990 = {\n",
"\n",
"}\n",
"emmissions_2000 = {\n",
" \n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long