2019-2020/Tsti2d/Questions_Flash/P1/QF_19_09_30-1.tex

70 lines
1.4 KiB
TeX
Raw Permalink Normal View History

2020-05-05 07:53:14 +00:00
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\usepackage[linesnumbered, boxed, french]{algorithm2e}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Tsti2d
\vfill
30 secondes par calcul
\vfill
\small \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Valeur de $\cos(\dfrac{-\pi}{3})$
\begin{center}
\begin{tikzpicture}[scale=2.5]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (90:1) node [below left] {A};
%\draw (0,0) -- (90:1);
%\draw[->, very thick, red] (0.8,0) arc (0:90:0.8) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 2}
Dériver
\[
f(x) = 3x^2 - 5x + 3
\]
\end{frame}
\begin{frame}{Calcul 3}
Calculer la quantité suivante
\[
\int_{0}^{x} 2 dt =
\]
\end{frame}
\begin{frame}{Calcul 4}
\begin{algorithm}[H]
\SetAlgoLined
$u \leftarrow 2$ \;
\Pour{$n$ de 1 à 3}{
$u \leftarrow u*3$ \;
}
\end{algorithm}
Combien vaut $u$ à la fin de cet algorithme?
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}