2019-2020/Tsti2d/Questions_Flash/P3/QF_20_01_06-3.tex

64 lines
990 B
TeX
Raw Normal View History

2020-05-05 07:53:14 +00:00
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\usepackage[linesnumbered, boxed, french]{algorithm2e}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Tsti2d
\vfill
30 secondes par calcul
\vfill
\small \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Démontrer que
\[
\ln(x^2) + \ln{\frac{1}{x}} + \ln{2} = \ln{2x}
\]
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
\int_{-1}^{1} t dt =
\]
\end{frame}
\begin{frame}{Calcul 3}
Soit
\[
u_n = 5\times 0.5^n + 1
\]
Déterminer
\[
\lim_{n\rightarrow +\infty} u_n =
\]
\end{frame}
\begin{frame}{Calcul 4}
On note $v_n = u_n - 1$ et $v_n = 0,2\times 10^n$.
Déterminer
\[
u_n =
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}