68 lines
1.3 KiB
TeX
68 lines
1.3 KiB
TeX
|
\documentclass[14pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
\usepackage[linesnumbered, boxed, french]{algorithm2e}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Tsti2d
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\small \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 1}
|
||
|
Dériver
|
||
|
\[
|
||
|
f(x) = \ln(2x + 1) + \ln(4)
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
Trouver une primitive de
|
||
|
\[
|
||
|
f(x) = 6x^3 + 10x^2 + 1
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
On donne $f(x) = \dfrac{2}{2x+1}$ \\
|
||
|
\vfill
|
||
|
Une primitive $F(x) = \ln(2x+1)$\\
|
||
|
\vfill
|
||
|
Calculer
|
||
|
\[
|
||
|
\int_0^{10} f(x) dx =
|
||
|
\]
|
||
|
\vfill
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 4}
|
||
|
Mesure de l'ange $(\vec{OA};\vec{OB})$?
|
||
|
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}
|
||
|
\draw (0, 0) node [below left] {$O$} -- (4, 0) node [midway, below] {$\sqrt{2}$} node [below right] {$A$} %
|
||
|
-- (4, 2) node [above] {$B$} -- cycle node [midway, above, sloped] {$2$};
|
||
|
\draw (4,0) rectangle (3.8, 0.2);
|
||
|
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|