2019-2020/Tsti2d/Questions_Flash/P4/QF_20_03_11-1.tex

67 lines
1.2 KiB
TeX
Raw Normal View History

2020-05-05 07:53:14 +00:00
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\usepackage[linesnumbered, boxed, french]{algorithm2e}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Tsti2d
\vfill
30 secondes par calcul
\vfill
\small \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Soit $X$ une variable aléatoire qui suit la loi $\mathcal{U}([3, 8])$.
\[
P(4 < X < 6) =
\]
\end{frame}
\begin{frame}{Calcul 2}
Donner la forme exponentielle de
\[
z = -\sqrt{3} + i
\]
\end{frame}
\begin{frame}{Calcul 3}
Démontrer que
\[
\ln(x^3) + \ln{\frac{e^2}{x}} = 2\ln(x) + 2
\]
\end{frame}
\begin{frame}{Calcul 4}
\begin{center}
\begin{minipage}{0.5\textwidth}
\begin{algorithm}[H]
\SetAlgoLined
$u \leftarrow 2$ \;
$n \leftarrow 0$ \;
\Tq{$u< 10$}{
$u \leftarrow u*2$ \;
$n \leftarrow n+1$ \;
}
\end{algorithm}
\end{minipage}
\end{center}
Combien vaut $n$ à la fin de cet algorithme?
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}