122 lines
2.9 KiB
TeX
122 lines
2.9 KiB
TeX
|
\documentclass[a4paper,10pt]{article}
|
||
|
\usepackage{myXsim}
|
||
|
|
||
|
\title{Variable aléatoires - Arbres}
|
||
|
\tribe{1ST}
|
||
|
\date{Décembre 2019}
|
||
|
|
||
|
\pagestyle{empty}
|
||
|
|
||
|
%\geometry{left=15mm,right=15mm, bottom=8mm, top=5mm}
|
||
|
\begin{document}
|
||
|
|
||
|
\section*{Arbres de probabilité}
|
||
|
|
||
|
Quand on répète plusieurs fois une expérience aléatoire. On a vu qu'il pouvait être intéressante de faire un \textbf{arbre de probabilité}.
|
||
|
|
||
|
On note la probabilité sur les branches et les issues sur les noeuds.
|
||
|
|
||
|
Un arbre de probabilité doit respecter une règle:
|
||
|
\begin{center}
|
||
|
Somme des probabilités des branches issues d'un noeud doit être égale à 1
|
||
|
\end{center}
|
||
|
|
||
|
Pour calculer la probabilité d'un chemin:
|
||
|
\begin{center}
|
||
|
On multiplie les probabilités des branches parcourues.
|
||
|
\end{center}
|
||
|
|
||
|
\subsection{De l'arbre vers la loi de probabilité}
|
||
|
|
||
|
On note $X$ la variable aléatoire qui compte le nombre de $S$ dans l'arbre suivant.
|
||
|
|
||
|
\begin{tikzpicture}[yscale=0.8]
|
||
|
\node {$\bullet$}
|
||
|
child {node {$S$}
|
||
|
child {node {$S$}
|
||
|
child {node {$S$}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child {node {$E$}
|
||
|
edge from parent
|
||
|
node[above] {0.9}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child[missing] {}
|
||
|
child {node {$E$}
|
||
|
child {node {$S$}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child {node {$E$}
|
||
|
edge from parent
|
||
|
node[above] {0.9}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.9}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child[missing] {}
|
||
|
child[missing] {}
|
||
|
child[missing] {}
|
||
|
child[missing] {}
|
||
|
child {node {$E$}
|
||
|
child {node {$S$}
|
||
|
child {node {$S$}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child {node {$E$}
|
||
|
edge from parent
|
||
|
node[above] {0.9}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child[missing] {}
|
||
|
child {node {$E$}
|
||
|
child {node {$S$}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child {node {$E$}
|
||
|
edge from parent
|
||
|
node[above] {0.9}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.9}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.9}
|
||
|
}
|
||
|
;
|
||
|
\end{tikzpicture}
|
||
|
|
||
|
On peut en déduire la loi de probabilité
|
||
|
|
||
|
\begin{center}
|
||
|
\begin{tabular}{|c|*{4}{p{2cm}|}}
|
||
|
\hline
|
||
|
Nombre de $S$ &&&&\\
|
||
|
\hline
|
||
|
$p_i$ &&&& \\
|
||
|
\hline
|
||
|
\end{tabular}
|
||
|
\end{center}
|
||
|
|
||
|
\afaire{Compléter la loi de probabilité}
|
||
|
|
||
|
\end{document}
|