74 lines
3.3 KiB
TeX
74 lines
3.3 KiB
TeX
|
\documentclass[a4paper,10pt]{article}
|
||
|
\usepackage{myXsim}
|
||
|
\usepackage{booktabs}
|
||
|
|
||
|
|
||
|
\title{Suites à connaître- Bilan}
|
||
|
\date{Novembre 2019}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\section*{Suites reconnaissables}
|
||
|
|
||
|
\subsection*{Suites arithmétiques}
|
||
|
|
||
|
Les \textbf{suites arithmétiques} modélisent les évolutions arithmétiques. On les reconnaît car pour passer d'un terme au suivant on ajoute (ou soustrait) toujours la même quantité appelée \textbf{raison} et notée $r$.
|
||
|
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[
|
||
|
roundnode/.style={circle, draw=green!60, fill=green!5, very thick, minimum size=7mm},
|
||
|
squarednode/.style={rectangle, draw=red!60, fill=red!5, very thick, minimum size=5mm},
|
||
|
]
|
||
|
%Nodes
|
||
|
\node[roundnode] (leftterme) {\makebox[1cm]{$u_0$}};
|
||
|
\node[roundnode] (centerterm) [right=of leftterme] {\makebox[1cm]{$u_1$}};
|
||
|
\node[roundnode] (rightterm) [right=of centerterm] {\makebox[1cm]{$u_2$}};
|
||
|
\node[roundnode] (nthterm) [right=of rightterm] {\makebox[1cm]{$u_n$}};
|
||
|
\node[roundnode] (nthplusterm) [right=of nthterm] {\makebox[1cm]{$u_{n+1}$}};
|
||
|
%Lines
|
||
|
\draw[->] (leftterme.east) -- (centerterm.west) node [midway, above] {+r};
|
||
|
\draw[->] (centerterm.east) -- (rightterm.west) node [midway, above] {+r};
|
||
|
\path (rightterm.east) -- (nthterm.west) node [midway] {...};
|
||
|
\draw[->] (nthterm.east) -- (nthplusterm.west) node [midway, above] {+r};
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
|
||
|
Elles sont caractérisée par un premier terme $u_0$ et la relation de récurrence suivantes
|
||
|
\[
|
||
|
u_{n+1} = u_n + r
|
||
|
\]
|
||
|
|
||
|
\subsection*{Suites géométriques}
|
||
|
|
||
|
Les \textbf{suites géométriques} modélisent les évolutions géométriques. On les reconnaît car pour passer d'un terme au suivant on multiplie (ou divise) toujours la même quantité appelée \textbf{raison} et notée $q$.
|
||
|
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[
|
||
|
roundnode/.style={circle, draw=green!60, fill=green!5, very thick, minimum size=7mm},
|
||
|
squarednode/.style={rectangle, draw=red!60, fill=red!5, very thick, minimum size=5mm},
|
||
|
]
|
||
|
%Nodes
|
||
|
\node[roundnode] (leftterme) {\makebox[1cm]{$u_0$}};
|
||
|
\node[roundnode] (centerterm) [right=of leftterme] {\makebox[1cm]{$u_1$}};
|
||
|
\node[roundnode] (rightterm) [right=of centerterm] {\makebox[1cm]{$u_2$}};
|
||
|
\node[roundnode] (nthterm) [right=of rightterm] {\makebox[1cm]{$u_n$}};
|
||
|
\node[roundnode] (nthplusterm) [right=of nthterm] {\makebox[1cm]{$u_{n+1}$}};
|
||
|
%Lines
|
||
|
\draw[->] (leftterme.east) -- (centerterm.west) node [midway, above] {$\times q$};
|
||
|
\draw[->] (centerterm.east) -- (rightterm.west) node [midway, above] {$\times q$};
|
||
|
\path (rightterm.east) -- (nthterm.west) node [midway] {...};
|
||
|
\draw[->] (nthterm.east) -- (nthplusterm.west) node [midway, above] {$\times q$};
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
|
||
|
Elles sont caractérisée par un premier terme $u_0$ et la relation de récurrence suivantes
|
||
|
\[
|
||
|
u_{n+1} = u_n \times q
|
||
|
\]
|
||
|
|
||
|
\subsection*{Remarque}
|
||
|
|
||
|
Dans son chapitre, on a rencontré des suites qui n'étaient ni arithmétique ni géométrique.
|
||
|
|
||
|
\end{document}
|