57 lines
1.2 KiB
TeX
57 lines
1.2 KiB
TeX
|
\documentclass[12pt,xcolor=table]{classPres}
|
||
|
|
||
|
\title{Dérivation et tableau de variations}
|
||
|
\date{Octobre 2019}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\begin{frame}{Dérivation d'un quotient}
|
||
|
\begin{block}{Dériver un quotient}
|
||
|
\[
|
||
|
\left( \frac{u}{v} \right)' = \frac{u'\times v - u\times v'}{v^2}
|
||
|
\]
|
||
|
\end{block}
|
||
|
\pause
|
||
|
\begin{block}{Tracer le tableau de signe}
|
||
|
\[
|
||
|
f(x) = \frac{6x+4}{-2x+6}
|
||
|
\qquad
|
||
|
g(x) = \frac{2x^2+3x+10}{3x+2}
|
||
|
\]
|
||
|
\end{block}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Dérivation d'une fonction composée $u^n$}
|
||
|
\begin{block}{Dérivation avec une puissance}
|
||
|
Soit $u$ une fonction dérivable sur $I$ et $n$ un entier.
|
||
|
\[
|
||
|
(u^n)' = n\times u' \times u^{n-1}
|
||
|
\]
|
||
|
\end{block}
|
||
|
\pause
|
||
|
\begin{block}{Tracer le tableau de signe}
|
||
|
\[
|
||
|
f(x) = (3x+2)^5
|
||
|
\qquad
|
||
|
g(x) = (x^2-5x)^3
|
||
|
\]
|
||
|
\end{block}
|
||
|
\pause
|
||
|
\begin{block}{Dériver}
|
||
|
\[
|
||
|
f(x) = \cos^2(x)
|
||
|
\qquad
|
||
|
g(x) = \sin^3(x)
|
||
|
\]
|
||
|
\end{block}
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
\end{document}
|
||
|
|
||
|
%%% Local Variables:
|
||
|
%%% mode: latex
|
||
|
%%% TeX-master: "master"
|
||
|
%%% End:
|
||
|
|