79 lines
1.6 KiB
TeX
79 lines
1.6 KiB
TeX
|
\documentclass[14pt]{classPres}
|
||
|
%\usepackage{tkz-fct}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Première ST 2
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 1}
|
||
|
Développer et réduire
|
||
|
\[
|
||
|
(2x-1)(4x+1) =
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
\begin{algorithm}[H]
|
||
|
\SetAlgoLined
|
||
|
$u \leftarrow 2$ \;
|
||
|
\Pour{$n$ de 1 à 3}{
|
||
|
$u \leftarrow u*10+1$ \;
|
||
|
}
|
||
|
\end{algorithm}
|
||
|
Combien vaut $u$ à la fin de cet algorithme?
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
Soit $(u_n)$ la suite définie par
|
||
|
\[
|
||
|
\left\{
|
||
|
\begin{array}{l}
|
||
|
u_{n+1} = u_n \times 10\\
|
||
|
u_0 = \np{1}
|
||
|
\end{array}
|
||
|
\right.
|
||
|
\]
|
||
|
Calculer
|
||
|
\[
|
||
|
u_4 =
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 4}
|
||
|
Quelle est l'équation de la droite passant par $A(0;2)$ et $B(1; 3)$?
|
||
|
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[yscale=0.5, xscale=1, baseline=(a.north)]
|
||
|
\tkzInit[xmin=-4,xmax=4,xstep=1,
|
||
|
ymin=-2,ymax=8,ystep=1]
|
||
|
\tkzGrid
|
||
|
\tkzAxeX
|
||
|
\tkzAxeY
|
||
|
\draw (0,2) node { $\times$ } node [below right] {$A$};
|
||
|
\draw (1,3) node { $\times$ } node [above right] {$B$};
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\vfill
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|