71 lines
1.7 KiB
TeX
71 lines
1.7 KiB
TeX
|
\documentclass[14pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Terminale ES-L
|
||
|
\vfill
|
||
|
Un peu moins d'une minute par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 1}
|
||
|
Factoriser
|
||
|
\[
|
||
|
xe^{-0.1x} + 2e^{-0.1x} =
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
Dans un sachet de bonbons, 60\% sont rouges. Parmi les bonbons rouges, 15\% sont à la fraise.
|
||
|
|
||
|
Quelle est la proportion de bonbon à la fraise?
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
Compléter le tableau de signe pour la fonction
|
||
|
\[
|
||
|
f(x) = 2x - 6
|
||
|
\]
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[baseline=(a.north)]
|
||
|
\tkzTabInit[lgt=2,espcl=2]{$x$/1,$f(x)$/1}{$-\infty$, \ldots, $+\infty$}
|
||
|
\tkzTabLine{, \ldots , z, \ldots , }
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 4}
|
||
|
Pour quelles valeurs de $x$, $f'(x)$ est nulle?
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[yscale=0.3, xscale=1, baseline=(a.north)]
|
||
|
\tkzInit[xmin=-4,xmax=4,xstep=1,
|
||
|
ymin=-8,ymax=4,ystep=1]
|
||
|
\tkzGrid
|
||
|
\tkzAxeX[right space=0.2]
|
||
|
\tkzAxeY[up space=2, step=2]
|
||
|
\draw[very thick, color=red] plot [smooth,tension=0.5] coordinates{%
|
||
|
(-4,-3) (-3,3) (-2,1) (-1,0) (2,1) (3, -3) (3.5,-8)
|
||
|
};
|
||
|
\draw (3,2) node[above right] {$\mathcal{C}_f$};
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|