2019-2020/1ST/DM/DM_19_10/08_DM_19_10.tex

165 lines
5.5 KiB
TeX

\documentclass[a4paper,10pt]{article}
\usepackage{tasks}
\usepackage{myXsim}
\title{DM 1 -- CHEVASSUS-A-L'ANTOINE Ioan}
\tribe{Première technologique}
\date{15 novembre 2019}
\xsimsetup{
solution/print = false
}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Automatismes}]
\begin{enumerate}
\item Développer puis réduire les expressions suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $A = - 7x^{2} - 3x + 1x - 9$
\item $B = - 7x^{2} - 1x^{2} - 9x - 6 - 6x$
\item $C = 1(1x + 9)$
\item $D = - 9x(- 3x + 10)$
\item $E = (- 10x - 10)(5x - 4)$
\item $F = (5x + 5)^{2}$
\end{enumerate}
\end{multicols}
\item Faire les calculs en détaillant les étapes
\begin{multicols}{2}
\begin{enumerate}
\item $\dfrac{10}{8} + \dfrac{8}{8}$
\item $\dfrac{6}{9} + \dfrac{9}{45}$
\item $\dfrac{9}{6} + \dfrac{3}{5}$
\item $\dfrac{8}{6} \times \dfrac{3}{7}$
\end{enumerate}
\end{multicols}
\item Résoudre les équations et l'inéquation suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $9x + 9 = 0$
\item $9x - 9 = - 3x - 1$
\item $- 2x - 4 \leq 0$
\end{enumerate}
\end{multicols}
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item Pas de correction disponible...
\item Faire les calculs en détaillant les étapes
\begin{multicols}{2}
\begin{enumerate}
\item $\dfrac{10}{8} + \dfrac{8}{8} = \dfrac{18}{8}$
\item $\dfrac{6}{9} + \dfrac{9}{45} = \dfrac{39}{45}$
\item $\dfrac{9}{6} + \dfrac{3}{5} = \dfrac{63}{30}$
\item $\dfrac{8}{6} \times \dfrac{3}{7} = \dfrac{24}{42}$
\end{enumerate}
\end{multicols}
\item Résoudre les équations et l'inéquation suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $x = -\dfrac{9}{9}}$
\item $x = \frac{- 8}{12}$
\item
$x \geq -\dfrac{- 4}{- 2}}$
\end{enumerate}
\end{multicols}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Taux de variations}]
Soit $f$ la fonction définie par
\[
f(x) = x^{2} - 9
\]
\begin{enumerate}
\item Compléter le tableau de valeur suivant
\begin{center}
\begin{tabular}{|c|*{11}{c|}}
\hline
x & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
f(x) &&&&&&&&&&&\\
\hline
\end{tabular}
\end{center}
\item Tracer la représentation graphique de la fonction $f$.
\item
\begin{enumerate}
\item Quelle est l'image de 1 par la fonction $f$?
\item Lire graphiquement et en laissant les traits de constructions la valeur de ou des antécédents de 1.
\item Combien d'antécédent a la valeur 0?
\end{enumerate}
\item Résoudre graphiquement $ f(x) > - 1$.
\item Calculer le taux de variation entre les valeurs suivantes puis interpréter les résultats.
\begin{enumerate}
\item $x_1 = - 2$ et $x_2 = - 1$
\item $x_3 = - 2$ et $x_4 = 4$
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item Compléter le tableau de valeur suivant
\begin{center}
\begin{tabular}{|c|*{11}{c|}}
\hline
x & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
f(x)
& 16
& 7
& 0
& - 5
& - 8
& - 9
& - 8
& - 5
& 0
& 7
& 16
\\
\hline
\end{tabular}
\end{center}
\item Pas de correction
\item
\begin{enumerate}
\item L'image de 1 est $f(1) = - 8$
\item On a 2 antécédents $- 3.1622776601683795$ et $3.1622776601683795$
\item 2 antécédents
\end{enumerate}
\item $\intOO{-\infty}{- 2.8284271247461903} \cup \intOO{- 2.8284271247461903}{+\infty}$
\item Calculer le taux de variation entre les valeurs suivantes puis interpréter les résultats.
\begin{enumerate}
\item
\[
\frac{f(x_2) - f(x_1)}{x_2-x_1} = \frac{- 8 - - 5}{- 1-- 2} = \dfrac{- 3}{1}
\]
\item
\[
\frac{f(x_4) - f(x_3)}{x_4-x_3} = \frac{7 - - 5}{4-- 2} = \dfrac{12}{6}
\]
\end{enumerate}
\end{enumerate}
\end{solution}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: