2019-2020/1ST/Questions_Flash/Spe/QF_19_12-13.tex

82 lines
1.4 KiB
TeX
Executable File

\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Le conjugué de
\[
z = 7i - 11
\]
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = (10i+1)(6i-4)
\]
\end{frame}
\begin{frame}{Calcul 3}
Valeur de
\[
\sin(\frac{2\pi}{3})
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Soit $||\vec{u}|| = 2$, $||\vec{v}||=5$ et l'angle $(\vec{u};\vec{v})$ qui vaut $\frac{\pi}{3}$.
Calculer
\vfill
\[
\vec{u}.\vec{v} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 5}
Soient
\[ A (2; 5) \qquad \qquad B(-4; 3) \]
Calculer les coordonnées du vecteur
\[
\vec{AB} =
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}