2019-2020/1ST/Questions_Flash/Spe/QF_20_02_21.tex

91 lines
2.1 KiB
TeX
Executable File

\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Soient
\[ \vec{u} = \vectCoord{-2}{0.5} \qquad \qquad \vec{v} = \vectCoord{6}{24} \]
\vfill
Est-ce que les vecteurs $\vec{u}$ et $\vec{v}$ sont orthogonaux?
\vfill
\end{frame}
\begin{frame}{Calcul 2}
Mesure de $BA$
\begin{center}
\begin{tikzpicture}
\draw (0, 0) node [below left] {$O$}%
-- (4, 0) node [midway, below] {$5$} node [below right] {$A$} %
-- (3, 2) node [above] {$B$}
-- cycle node [midway, above, sloped] {$2$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 3}
Solutions de
\[
\cos(x) = -\frac{\sqrt{3}}{2}
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Quelle est l'affixe de la lettre D?
\begin{center}
\begin{tikzpicture}[yscale=.5, xscale=.8]
\repere{-5}{5}{-5}{5}
\draw (-2, 3) node {$\times$} node[above] {$A$};
\draw (2, 3) node {$\times$} node[above] {$B$};
\draw (3, 2) node {$\times$} node[above] {$C$};
\draw (2, -4) node {$\times$} node[above] {$D$};
\draw (-3, -4) node {$\times$} node[above] {$E$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 5}
Calculer
\[
B = \frac{-i+2}{1+2i}
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}