109 lines
3.4 KiB
TeX
109 lines
3.4 KiB
TeX
\documentclass[a4paper,10pt]{article}
|
|
\usepackage{myXsim}
|
|
|
|
\title{Comparaison - Exercices}
|
|
\tribe{Terminale TESL}
|
|
\date{Janvier 2020}
|
|
|
|
\pagestyle{empty}
|
|
\geometry{left=10mm,right=10mm, top=10mm}
|
|
|
|
\renewcommand{\baselinestretch}{0.8}
|
|
|
|
\begin{document}
|
|
|
|
\setlength{\columnseprule}{0pt}
|
|
\begin{exercise}[subtitle={Intégrale et aire}]
|
|
Calculer les quantités suivantes
|
|
\begin{multicols}{4}
|
|
\begin{enumerate}
|
|
\item
|
|
$\displaystyle
|
|
\int_2^5 3 dx
|
|
$
|
|
|
|
\hspace{-1cm}
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
\tkzInit[xmin=0,xmax=5,xstep=1,
|
|
ymin=0,ymax=4,ystep=1]
|
|
\tkzGrid
|
|
\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
\tkzFct[domain = 0:5, line width=1pt]{3}
|
|
\end{tikzpicture}
|
|
|
|
\item
|
|
$\displaystyle
|
|
\int_{2}^{5} x dx
|
|
$
|
|
|
|
\hspace{-1cm}
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
\tkzInit[xmin=0,xmax=5,xstep=1,
|
|
ymin=0,ymax=5,ystep=1]
|
|
\tkzGrid
|
|
\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
\tkzFct[domain = 0:5, line width=1pt]{x}
|
|
\end{tikzpicture}
|
|
|
|
\item
|
|
$\displaystyle
|
|
\int_0^2 2x dx
|
|
$
|
|
|
|
\hspace{-1cm}
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
\tkzInit[xmin=-2,xmax=3,xstep=1,
|
|
ymin=-6,ymax=6,ystep=2]
|
|
\tkzGrid
|
|
%\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
\tkzFct[domain = -2:3, line width=1pt]{2*x}
|
|
\end{tikzpicture}
|
|
|
|
\item
|
|
$\displaystyle
|
|
\int_{0}^{2} 0.5 dx
|
|
$
|
|
|
|
\hspace{-1cm}
|
|
\begin{tikzpicture}[yscale=.6, xscale=0.8]
|
|
\tkzInit[xmin=-2,xmax=3,xstep=1,
|
|
ymin=-2,ymax=2,ystep=1]
|
|
\tkzGrid
|
|
\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
\tkzFct[domain = -2:3, line width=1pt]{0.5}
|
|
%\tkzFct[domain = 0:5, line width=1pt]{0.5}
|
|
\end{tikzpicture}
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
|
|
\begin{multicols}{4}
|
|
\begin{enumerate}
|
|
\setcounter{enumi}{4}
|
|
\item $\displaystyle \int_{0}^{2} 4 dx$
|
|
\item $\displaystyle \int_{-100}^{100} 5 dx$
|
|
\item $\displaystyle \int_{5}^{10} 2x dx$
|
|
\item $\displaystyle \int_{5}^{10} 5x dx$
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
\begin{enumerate}
|
|
\setcounter{enumi}{8}
|
|
\item Comment peut-on calculer la quantité $\displaystyle \int_{a}^{b} f(x) dx$? Quand
|
|
\begin{multicols}{2}
|
|
\begin{enumerate}
|
|
\item $f$ est une fonction constante.
|
|
\item $f$ est une fonction linéaire.
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
\end{enumerate}
|
|
\end{exercise}
|
|
|
|
\printexercise{exercise}{1}
|
|
|
|
\printexercise{exercise}{1}
|
|
|
|
\end{document}
|