2019-2020/TES/Logarithme/Relation_fonctionnelle/1B_definition_ln.tex
2020-05-05 09:53:14 +02:00

50 lines
1.5 KiB
TeX

\documentclass[a4paper,12pt]{article}
\usepackage{myXsim}
\title{Logarithme - relation fonctionnelle}
\tribe{Terminale ES}
\date{Mars 2020}
\begin{document}
\section{Logarithme népérien}
\subsection*{Définition}
Pour tout nombre réel $a > 0$, il existe un unique nombre $b$ tel que $e^b = a$.
$b$ est appelé \textbf{logarithme népérien} de $a$ et est noté $\ln(a)$. On peut alors noter
\[
e^b = a \qquad \equiv \ln(a) = b
\]
La fonction \textbf{logarithme népérien}, notée $\ln$, est la fonction qui à tout $x > 0$ associe $\ln(x)$
\subsection*{Valeurs particulières du logarithme}
\afaire{Calculer les valeurs de $\ln(1)$ et $\ln(e)$}
\subsection*{Propriétés}
\begin{itemize}
\item Pour tout $x > 0$, $e^{\ln(x)} = x$
\item Pour tout $x \in \R$, $\ln(e^x) = x$
\end{itemize}
\section{Utilisation pour résoudre des équations}
Le logarithme peut être utilisé pour résoudre des équations ou inéquation mettant en jeux des exponentielle ou des puissances.
\subsection*{Propriétés}
Les propriétés suivantes sont données pour des égalités mais restent valables pour les inégalités dont le sens est conservé.
\begin{itemize}
\item Pour tout $k>0$, l'équation $e^x = k$ a une unique solution $x=\ln(k)$.
\item Pour tout $k\leq0$, l'équation $e^x = k$ n'a pas de solution.
\item Pour tout $k \in \R$, l'équation $\ln(x) = k$ a une unique solution $x = e^k$.
\end{itemize}
\subsubsection*{Exemple}
\afaire{Résoudre l'équation $4e^{x} + 1 = 10$}
\end{document}