2019-2020/Tsti2d/Questions_Flash/P3/QF_20_02_03-1.tex
2020-05-05 09:53:14 +02:00

68 lines
1.3 KiB
TeX
Executable File

\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\usepackage[linesnumbered, boxed, french]{algorithm2e}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Tsti2d
\vfill
30 secondes par calcul
\vfill
\small \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Dériver
\[
f(x) = \ln(2x + 1) + \ln(4)
\]
\end{frame}
\begin{frame}{Calcul 2}
Trouver une primitive de
\[
f(x) = 6x^3 + 10x^2 + 1
\]
\end{frame}
\begin{frame}{Calcul 3}
On donne $f(x) = \dfrac{2}{2x+1}$ \\
\vfill
Une primitive $F(x) = \ln(2x+1)$\\
\vfill
Calculer
\[
\int_0^{10} f(x) dx =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 4}
Mesure de l'ange $(\vec{OA};\vec{OB})$?
\begin{center}
\begin{tikzpicture}
\draw (0, 0) node [below left] {$O$} -- (4, 0) node [midway, below] {$\sqrt{2}$} node [below right] {$A$} %
-- (4, 2) node [above] {$B$} -- cycle node [midway, above, sloped] {$2$};
\draw (4,0) rectangle (3.8, 0.2);
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}