2019-2020/TES/Questions_Flash/P3/QF_20_01_06-3.tex
2020-05-05 09:53:14 +02:00

125 lines
3.1 KiB
TeX

\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale L-ES
\vfill
Un peu moins d'une minute par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Calculer la quantité suivante
\[
2\times1 + 2\times0.1^2 + 2\times0.1^3 + \ldots + 2\times0.1^{20} =
\]
\end{frame}
\begin{frame}{Calcul 2}
On donne $P(G\cap \overline{E}) = 0.2$ et $P(F\cap \overline{E}) = 0.5$
\begin{center}
\begin{tikzpicture}[xscale=2]
\node {.}
child {node {$F$}
child {node {$E$}
edge from parent
node[left] {}
}
child {node {$\overline{E}$}
edge from parent
node[right] {}
}
edge from parent
node[left] {0.6}
}
child[missing] {}
child { node {$G$}
child {node {$E$}
edge from parent
node[left] {}
}
child {node {$\overline{E}$}
edge from parent
node[right] {}
}
edge from parent
node [right] {0.4}
} ;
\end{tikzpicture}
\end{center}
Calculer $P_G(\overline{E})$
\end{frame}
\begin{frame}{Calcul 2}
On donne $P(E) = 0.70$ et $P(F\cap E) = 0.1$
\begin{center}
\begin{tikzpicture}[xscale=1]
\node {.}
child {node {$F$}
child {node {$E$}
edge from parent
node[left] {}
}
child {node {$\overline{E}$}
edge from parent
node[right] {}
}
edge from parent
node[above] {0.5}
}
child[missing] {}
child { node {$H$}
child {node {$E$}
edge from parent
node[left] {0.9}
}
child {node {$\overline{E}$}
edge from parent
node[right] {0.1}
}
edge from parent
node {0.1}
}
child[missing] {}
child { node {$G$}
child {node {$E$}
edge from parent
node[left] {}
}
child {node {$\overline{E}$}
edge from parent
node[right] {}
}
edge from parent
node[above] {0.4}
} ;
\end{tikzpicture}
\end{center}
Calculer $P(G\cap E)$
\end{frame}
\begin{frame}{Calcul 4}
Factoriser l'expression suivante
\[
f(x) = 2xe^{-0.4x} - (x+1)e^{-0.4x} + 0.1e^{-0.4x}
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}