2019-2020/Tsti2d/Analyse/Exponentielle/Etude_fonction/1E_derivation.tex
2020-05-05 09:53:14 +02:00

62 lines
1.7 KiB
TeX

\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\title{Dérivation de l'exponentielle}
\tribe{Terminale ES}
\date{Janvier 2020}
\geometry{left=10mm,right=10mm, top=10mm}
\pagestyle{empty}
\begin{document}
\begin{exercise}[subtitle={Dériver les fonctions}]
\begin{multicols}{3}
\begin{enumerate}
\item $f(x) = e^x - 1$
\item $f(x) = -2e^{x} + x$
\item $f(x) = (x+1)e^{x}$
\item $f(x) = \dfrac{e^x}{2 - x}$
\item $f(x) = -2xe^x$
\item $f(x) = (x^2 - x )e^x$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Étudier le signe des fonctions}]
\begin{multicols}{2}
\begin{enumerate}
\item $f(x) = e^x + 1$ sur $I=\R$
\item $g(x) = (x-2)e^x$ sur $I = \R$
\item $h(x) = (2x^2+x-3)e^x$ sur $I = \R$
\item $i(x) = \dfrac{(2x+1)e^{x}}{4-x}$ sur $I = \intOO{-\infty}{4} \cup \intOO{4}{+\infty}$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Variations}]
Pour chacune des fonctions suivantes,trouver le domaine de définition, calculer la dérivée, étudier son signe et en déduire les variations de la fonction initiale.
\begin{multicols}{3}
\begin{enumerate}
\item $f(x) = (3x-1)e^{x}$
\item $g(x) = \dfrac{e^{x}}{2x+1}$
\item $h(x) = (x^2+3x-1)e^{x}$
%\item $g(x) = \dfrac{2xe^{x}}{x-1}$
\end{enumerate}
\end{multicols}
\end{exercise}
\vfill
\printexercise{exercise}{1}
\printexercise{exercise}{2}
\printexercise{exercise}{3}
\vfill
\printexercise{exercise}{1}
\printexercise{exercise}{2}
\printexercise{exercise}{3}
\end{document}