2020-2021/TST/DM/2010_DM1/TST1/11_2010_DM1.tex

142 lines
5.3 KiB
TeX
Raw Permalink Normal View History

2020-10-15 20:15:28 +00:00
\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}
% Title Page
\title{DM1 \hfill FERREIRA Léo}
\tribe{TST}
\date{Toussain 2020}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Fractions}]
Faire les calculs avec les fraction suivants
\begin{multicols}{3}
\begin{enumerate}
\item $A = \dfrac{4}{7} - \dfrac{7}{7}$
\item $B = \dfrac{9}{10} - \dfrac{6}{20}$
\item $C = \dfrac{10}{3} + \dfrac{- 1}{2}$
\item $D = \dfrac{1}{5} + 3$
\item $E = \dfrac{- 1}{4} \times \dfrac{- 7}{3}$
\item $F = \dfrac{3}{7} \times 9$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\[
\dfrac{4}{7} - \dfrac{7}{7}=\dfrac{4}{7} - \dfrac{7}{7}=\dfrac{4 - 7}{7}=\dfrac{4 - 7}{7}=\dfrac{- 3}{7}
\]
\item
\[
\dfrac{9}{10} - \dfrac{6}{20}=\dfrac{9}{10} - \dfrac{6}{20}=\dfrac{9 \times 2}{10 \times 2} - \dfrac{6}{20}=\dfrac{18}{20} - \dfrac{6}{20}=\dfrac{18 - 6}{20}=\dfrac{18 - 6}{20}=\dfrac{12}{20}
\]
\item
\[
\dfrac{10}{3} + \dfrac{- 1}{2}=\dfrac{10 \times 2}{3 \times 2} + \dfrac{- 1 \times 3}{2 \times 3}=\dfrac{20}{6} + \dfrac{- 3}{6}=\dfrac{20 - 3}{6}=\dfrac{17}{6}
\]
\item
\[
\dfrac{1}{5} + 3=\dfrac{1}{5} + \dfrac{3}{1}=\dfrac{1}{5} + \dfrac{3 \times 5}{1 \times 5}=\dfrac{1}{5} + \dfrac{15}{5}=\dfrac{1 + 15}{5}=\dfrac{16}{5}
\]
\item
\[
\dfrac{- 1}{4} \times \dfrac{- 7}{3}=\dfrac{- 1 \times - 7}{4 \times 3}=\dfrac{7}{12}
\]
\item
\[
\dfrac{3}{7} \times 9=\dfrac{3 \times 9}{7}=\dfrac{27}{7}
\]
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Développer réduire}]
Développer puis réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $A = (- 8x - 7)(- 1x - 7)$
\item $B = (5x - 1)(- 2x - 1)$
\item $C = (- 3x + 7)^{2}$
\item $D = - 4 + x(1x + 1)$
\item $E = - 10x^{2} + x(5x - 1)$
\item $F = 10(x + 5)(x - 10)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
A &= (- 8x - 7)(- 1x - 7)\\&= - 8x \times - x - 8x \times - 7 - 7 \times - x - 7 \times - 7\\&= - 8 \times - 1 \times x^{1 + 1} - 7 \times - 8 \times x - 7 \times - 1 \times x + 49\\&= 56x + 7x + 8x^{2} + 49\\&= (56 + 7) \times x + 8x^{2} + 49\\&= 8x^{2} + 63x + 49
\end{align*}
\item
\begin{align*}
B &= (5x - 1)(- 2x - 1)\\&= 5x \times - 2x + 5x \times - 1 - 1 \times - 2x - 1 \times - 1\\&= 5 \times - 2 \times x^{1 + 1} - 1 \times 5 \times x - 1 \times - 2 \times x + 1\\&= - 5x + 2x - 10x^{2} + 1\\&= (- 5 + 2) \times x - 10x^{2} + 1\\&= - 10x^{2} - 3x + 1
\end{align*}
\item
\begin{align*}
C &= (- 3x + 7)^{2}\\&= (- 3x + 7)(- 3x + 7)\\&= - 3x \times - 3x - 3x \times 7 + 7 \times - 3x + 7 \times 7\\&= - 3 \times - 3 \times x^{1 + 1} + 7 \times - 3 \times x + 7 \times - 3 \times x + 49\\&= - 21x - 21x + 9x^{2} + 49\\&= (- 21 - 21) \times x + 9x^{2} + 49\\&= 9x^{2} - 42x + 49
\end{align*}
\item
\begin{align*}
D &= - 4 + x(1x + 1)\\&= - 4 + x \times x + x \times 1\\&= x^{2} + x - 4
\end{align*}
\item
\begin{align*}
E &= - 10x^{2} + x(5x - 1)\\&= - 10x^{2} + x \times 5x + x \times - 1\\&= - 10x^{2} + 5x^{2} - x\\&= - 10x^{2} + 5x^{2} - x\\&= (- 10 + 5) \times x^{2} - x\\&= - 5x^{2} - x
\end{align*}
\item
\begin{align*}
F &= 10(x + 5)(x - 10)\\&= (10x + 10 \times 5)(x - 10)\\&= (10x + 50)(x - 10)\\&= 10x \times x + 10x \times - 10 + 50x + 50 \times - 10\\&= - 10 \times 10 \times x - 500 + 10x^{2} + 50x\\&= - 100x - 500 + 10x^{2} + 50x\\&= 10x^{2} - 100x + 50x - 500\\&= 10x^{2} + (- 100 + 50) \times x - 500\\&= 10x^{2} - 50x - 500
\end{align*}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Étude de fonctions}]
Soit $f(x) = - x^{2} - 5x + 14$ une fonction définie sur $\R$.
\begin{enumerate}
\item Calculer les valeurs suivantes
\[
f(1) \qquad f(-2)
\]
\item Dériver la fonction $f$
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item On remplace $x$ par les valeurs demandées
\[
f(1) = - 1 \times 1^{2} - 5 \times 1 + 14=- 1 \times 1 - 5 + 14=- 1 + 9=8
\]
\[
f(-1) = - 1 \times - 1^{2} - 5 \times - 1 + 14=- 1 \times 1 + 5 + 14=- 1 + 19=18
\]
\item Pas de solutions automatiques.
\item Pas de solutions automatiques.
\end{enumerate}
\end{solution}
%\printsolutionstype{exercise}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: