2020-2021/Complementaire/04_eq_diff/exercises.tex

61 lines
5.0 KiB
TeX
Raw Normal View History

\collectexercises{banque}
%\begin{exercise}[subtitle={Position - vitesse - accélération}, step={1}, origin={Création}, topics={Équation différentielle}, tags={analyse, exponentiel, dérivation}]
% \begin{enumerate}
% \item On observe un mobile en mouvement et on décrit sa position verticale en fonction du temps $t$ en secondes par la fonction $z(t) = -4,9t^2 + 12$.
% \begin{enumerate}
% \item Déterminer la fonction décrivant la vitesse du module $v(t) = z'(t)$ (ou en notation physique $\dfrac{dz}{dt}$).
% \item Déterminer la fonction décrivant l'accélération du module $a(t) = v'(t)$ (ou en notation physique $\dfrac{dv}{dt}$).
% \item À quelle hauteur le mobile a été lâché? Quel était alors sa vitesse? Son accélération?
% \end{enumerate}
% \item On étudie un mobile en chute libre. On le lance à une hauteur de 10m au dessus du sol avec une vitesse de 1m/s. Un bilan des forces permet de connaître son accélération au cours du mouvement: $a(t) = -10$.
% \begin{enumerate}
% \item On rappelle que l'accélération est la dérivée de la vitesse ($a(t) = v'(t)$). Déterminer la fonction vitesse du mobile.
% \item On rappelle que la vitesse est la dérivée de la position ($v(t) = z(t)$). Déterminer la fonction position du mobile.
% \item Est-ce que les deux fonctions déterminées aux questions précédentes sont conformes aux conditions initiales?
% \end{enumerate}
% \item On considère, la fonction $m(t)$ qui modélise la masse d'une réactif dans une réaction chimique. Une étude cinétique de la réaction mène déduire que l'évolution de la masse du réactif (la vitesse de la réaction) est proportionnelle à cette masse du réactif. On traduit cela par la formule $\dfrac{dm}{dt} = -k \times m(t)$.
%
% Pour simplifier, on estimera que $k = 1$ et que l'on a donc $\dfrac{dm}{dt} = -m(t)$
%
% \begin{enumerate}
% \item Est-ce que $v(t)$ peut-être une fonction constante?
% \item Est-ce que $v(t)$ peut-être une fonction polynôme?
% \item Est-ce que $v(t)$ peut-être une fonction exponentielle?
% \end{enumerate}
% \end{enumerate}
%\end{exercise}
\begin{exercise}[subtitle={Loi de Malthus}, step={2}, origin={Création}, topics={Équation différentielle}, tags={analyse, exponentiel, dérivation}]
On peut estimer la population mondiale en l'an 0 à environ 200 millions d'individus et celle de l'an 2000 à 6 milliards d'individus.
La \textbf{loi de Malthus} fait entre autre l'hypothèse que la vitesse d'accroissement de la population est proportionnelle à la population.
Vous devez déterminer une fonction qui modélise la population mondiale pour ensuite donner une estimation de la population mondiale en -5000 avant JC ainsi que l'année où la population dépassera les 10 milliards.
\end{exercise}
\begin{exercise}[subtitle={Refroidissement}, step={2}, origin={Création}, topics={Équation différentielle}, tags={analyse, exponentiel, dérivation}]
On sort un plat du four à 100°C pour le manger dehors alors qu'il fait 0°C. Après 10minutes, le plat est à 45°C.
La modélisation physique dans ces conditions considère que la vitesse de refroidissement des proportionnelle à la temperature du plat.
Vous devez déterminer la fonction qui modéliser la temperature du plat puis ensuite estimer sa température après 5minutes et ainsi que le temps qu'il faudra attendre pour qu'il atteigne 10°C.
\end{exercise}
\begin{exercise}[subtitle={Décroissance radioactive}, step={2}, origin={Création}, topics={Équation différentielle}, tags={analyse, exponentiel, dérivation}]
Les organismes vivants contienne naturellement du carbone 14 (élément radioactif) provenant du rayonnement cosmique. Pendant leur vie, la concentration en carbone 14 est constamment renouvelé et on peut la considéré constante égale à 15,3unités.
L'étude de la désintégration du carbon 14 a conduit à la loi suivante: la vitesse de désintégration est proportionnelle à la concentration et que le coefficient de proportionnalité est égal à -0.124.
Vous devez déterminer la fonction qui modélise la concentration en carbone 14 d'un organisme vivant après sa mort puis vous devrez calculer l'age d'un fragment d'os qui a une concentration en carbon 14 égale à 7.24unités.
\end{exercise}
\begin{exercise}[subtitle={Taux d'intérêt continue}, step={2}, origin={Création}, topics={Équation différentielle}, tags={analyse, exponentiel, dérivation}]
On place \np{10000}\euro sur un placement avec un rendement annuel de 5\%.
On souhaite retirer cet argent 2ans et demi après son ouverture. Combien va-t-on récupérer?
\textit{Pour modéliser la situation, on considèrera que la vitesse d'accroissement du placement est proportionnelle à quantité d'argent dessus}
\end{exercise}
\collectexercisesstop{banque}