Soit $f$ la fonction définie sur $\intFF{0}{60}$ par $f(x)=-0,1x^2+6x -50$. Cette fonction représente le résultat (en milion d'euros) que réalise une entrpirse pour la fabrication de $x$ milions de jouets. La représentation graphique $\mathcal{C}$ de la fonction $f$ représentée ci dessous.
\noindent
\begin{minipage}{0.55\textwidth}
\begin{enumerate}
\item Recherche graphique
\begin{enumerate}
\item Déterminer graphiquement le bénéfice maximal et le nombre de jouets fabriqués pour lequel ce maximum est atteint.
Soit $f$ la fonction définie sur $\intFF{0}{60}$ par $f(x)=-0,1x^2+5,5x -25$. Cette fonction représente le résultat (en million d'euros) que réalise une entreprise pour la fabrication de $x$ millions de jouets. La représentation graphique $\mathcal{C}$ de la fonction $f$ représentée ci dessous.
\item On s'intéresse à une ruche qui n'est soumise ni au bruit ni à la pollution. Le graphique ci-contre représente l'évolution de la population en fonction des années.
On note $n$ le numéro de l'année et $u_n$ le nombre d'abeilles à l'année $n$.
\bigskip
\begin{enumerate}
\item Pourquoi peut-on estimer que la suite $(u_n)$ est arithmétique? Quelle est sa raison et son premier terme?
\item Quelle sera la population de cette ruche l'année 6? L'année 10?
\item On s'intéresse à une riche perturbée par la pollution et le bruit. Elle est composée initialement de \np{50000} abeilles dont la reine mais sa population diminue de 8\% par an.
\begin{enumerate}
\item Quelle est la population de cette ruche après un an de perturbation?
\item Expliquer pourquoi la population de cette ruche est multipliée par 0.92 chaque année.
\end{enumerate}
On modélise la population de cette ruche par la suite géométrique $(v_n)$ de premier terme $v_0=\np{50000}$ et de raison $q =0.92$
\begin{enumerate}
\setcounter{enumii}{2}
\item Calculer $v_1$, $v_2$ et $v_3$.
\item Écrire une programme python qui permettrait de calculer $v_{10}$.
\item On s'intéresse à une ruche qui n'est soumise ni au bruit ni à la pollution. Le graphique ci-contre représente l'évolution de la population en fonction des années.
On note $n$ le numéro de l'année et $u_n$ le nombre d'abeilles à l'année $n$.
\begin{enumerate}
\item Pourquoi peut-on estimer que la suite $(u_n)$ est arithmétique? Quelle est sa raison et son premier terme?
\item Quelle sera la population de cette ruche l'année 6? L'année 10?
\item On s'intéresse à une riche perturbée par la pollution et le bruit. Elle est composée initialement de \np{50000} abeilles dont la reine mais sa population diminue de 9\% par an.
\begin{enumerate}
\item Quelle est la population de cette ruche après un an de perturbation?
\item Expliquer pourquoi la population de cette ruche est multipliée par 0.91 chaque année.
\end{enumerate}
On modélise la population de cette ruche par la suite géométrique $(v_n)$ de premier terme $v_0=\np{30000}$ et de raison $q =0.91$
\begin{enumerate}
\setcounter{enumii}{2}
\item Calculer $v_1$, $v_2$ et $v_3$.
\item Écrire une programme python qui permettrait de calculer $v_{10}$.