142 lines
5.1 KiB
TeX
142 lines
5.1 KiB
TeX
|
\documentclass[a5paper,10pt]{article}
|
||
|
\usepackage{myXsim}
|
||
|
\usepackage{tasks}
|
||
|
|
||
|
% Title Page
|
||
|
\title{DM1 \hfill DEBRAS Noémie}
|
||
|
\tribe{TST}
|
||
|
\date{Toussain 2020}
|
||
|
|
||
|
\begin{document}
|
||
|
\maketitle
|
||
|
|
||
|
\begin{exercise}[subtitle={Fractions}]
|
||
|
Faire les calculs avec les fraction suivants
|
||
|
\begin{multicols}{3}
|
||
|
\begin{enumerate}
|
||
|
\item $A = \dfrac{- 4}{10} - \dfrac{- 6}{10}$
|
||
|
\item $B = \dfrac{4}{10} - \dfrac{10}{100}$
|
||
|
|
||
|
\item $C = \dfrac{8}{8} + \dfrac{- 5}{7}$
|
||
|
\item $D = \dfrac{2}{8} - 1$
|
||
|
|
||
|
\item $E = \dfrac{- 8}{9} \times \dfrac{- 8}{8}$
|
||
|
\item $F = \dfrac{- 6}{5} \times 7$
|
||
|
\end{enumerate}
|
||
|
\end{multicols}
|
||
|
\end{exercise}
|
||
|
|
||
|
\begin{solution}
|
||
|
\begin{enumerate}
|
||
|
\item
|
||
|
\[
|
||
|
\dfrac{- 4}{10} - \dfrac{- 6}{10}=\dfrac{- 4}{10} + \dfrac{6}{10}=\dfrac{- 4 + 6}{10}=\dfrac{2}{10}
|
||
|
\]
|
||
|
\item
|
||
|
\[
|
||
|
\dfrac{4}{10} - \dfrac{10}{100}=\dfrac{4}{10} - \dfrac{10}{100}=\dfrac{4 \times 10}{10 \times 10} - \dfrac{10}{100}=\dfrac{40}{100} - \dfrac{10}{100}=\dfrac{40 - 10}{100}=\dfrac{40 - 10}{100}=\dfrac{30}{100}
|
||
|
\]
|
||
|
\item
|
||
|
\[
|
||
|
\dfrac{8}{8} + \dfrac{- 5}{7}=\dfrac{8 \times 7}{8 \times 7} + \dfrac{- 5 \times 8}{7 \times 8}=\dfrac{56}{56} + \dfrac{- 40}{56}=\dfrac{56 - 40}{56}=\dfrac{16}{56}
|
||
|
\]
|
||
|
\item
|
||
|
\[
|
||
|
\dfrac{2}{8} - 1=\dfrac{2}{8} + \dfrac{- 1}{1}=\dfrac{2}{8} + \dfrac{- 1 \times 8}{1 \times 8}=\dfrac{2}{8} + \dfrac{- 8}{8}=\dfrac{2 - 8}{8}=\dfrac{- 6}{8}
|
||
|
\]
|
||
|
\item
|
||
|
\[
|
||
|
\dfrac{- 8}{9} \times \dfrac{- 8}{8}=\dfrac{- 8 \times - 8}{9 \times 8}=\dfrac{64}{72}
|
||
|
\]
|
||
|
\item
|
||
|
\[
|
||
|
\dfrac{- 6}{5} \times 7=\dfrac{- 6 \times 7}{5}=\dfrac{- 42}{5}
|
||
|
\]
|
||
|
\end{enumerate}
|
||
|
\end{solution}
|
||
|
|
||
|
\begin{exercise}[subtitle={Développer réduire}]
|
||
|
Développer puis réduire les expressions suivantes
|
||
|
\begin{multicols}{2}
|
||
|
\begin{enumerate}
|
||
|
\item $A = (- 6x + 1)(- 2x + 1)$
|
||
|
\item $B = (- 5x + 3)(- 3x + 3)$
|
||
|
|
||
|
\item $C = (1x + 8)^{2}$
|
||
|
\item $D = - 8 + x(- 5x - 1)$
|
||
|
|
||
|
\item $E = 5x^{2} + x(9x + 8)$
|
||
|
\item $F = - 2(x + 5)(x - 5)$
|
||
|
\end{enumerate}
|
||
|
\end{multicols}
|
||
|
\end{exercise}
|
||
|
|
||
|
\begin{solution}
|
||
|
\begin{enumerate}
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
A &= (- 6x + 1)(- 2x + 1)\\&= - 6x \times - 2x - 6x \times 1 + 1 \times - 2x + 1 \times 1\\&= - 6 \times - 2 \times x^{1 + 1} - 6x - 2x + 1\\&= 12x^{2} - 6x - 2x + 1\\&= 12x^{2} + (- 6 - 2) \times x + 1\\&= 12x^{2} - 8x + 1
|
||
|
\end{align*}
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
B &= (- 5x + 3)(- 3x + 3)\\&= - 5x \times - 3x - 5x \times 3 + 3 \times - 3x + 3 \times 3\\&= - 5 \times - 3 \times x^{1 + 1} + 3 \times - 5 \times x + 3 \times - 3 \times x + 9\\&= - 15x - 9x + 15x^{2} + 9\\&= (- 15 - 9) \times x + 15x^{2} + 9\\&= 15x^{2} - 24x + 9
|
||
|
\end{align*}
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
C &= (1x + 8)^{2}\\&= (x + 8)(x + 8)\\&= x \times x + x \times 8 + 8x + 8 \times 8\\&= x^{2} + 64 + (8 + 8) \times x\\&= x^{2} + 16x + 64
|
||
|
\end{align*}
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
D &= - 8 + x(- 5x - 1)\\&= - 8 + x \times - 5x + x \times - 1\\&= - 5x^{2} - x - 8
|
||
|
\end{align*}
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
E &= 5x^{2} + x(9x + 8)\\&= 5x^{2} + x \times 9x + x \times 8\\&= 5x^{2} + 9x^{2} + 8x\\&= 5x^{2} + 9x^{2} + 8x\\&= (5 + 9) \times x^{2} + 8x\\&= 14x^{2} + 8x
|
||
|
\end{align*}
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
F &= - 2(x + 5)(x - 5)\\&= (- 2x - 2 \times 5)(x - 5)\\&= (- 2x - 10)(x - 5)\\&= - 2x \times x - 2x \times - 5 - 10x - 10 \times - 5\\&= - 5 \times - 2 \times x + 50 - 2x^{2} - 10x\\&= 10x + 50 - 2x^{2} - 10x\\&= - 2x^{2} + 10x - 10x + 50\\&= - 2x^{2} + (10 - 10) \times x + 50\\&= - 2x^{2} + 50 + 0x\\&= - 2x^{2} + 50
|
||
|
\end{align*}
|
||
|
\end{enumerate}
|
||
|
\end{solution}
|
||
|
|
||
|
\begin{exercise}[subtitle={Étude de fonctions}]
|
||
|
Soit $f(x) = - 8x^{2} + 48x + 56$ une fonction définie sur $\R$.
|
||
|
\begin{enumerate}
|
||
|
\item Calculer les valeurs suivantes
|
||
|
\[
|
||
|
f(1) \qquad f(-2)
|
||
|
\]
|
||
|
\item Dériver la fonction $f$
|
||
|
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
|
||
|
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
|
||
|
\end{enumerate}
|
||
|
\end{exercise}
|
||
|
|
||
|
\begin{solution}
|
||
|
\begin{enumerate}
|
||
|
\item On remplace $x$ par les valeurs demandées
|
||
|
\[
|
||
|
f(1) = - 8 \times 1^{2} + 48 \times 1 + 56=- 8 \times 1 + 48 + 56=- 8 + 104=96
|
||
|
\]
|
||
|
\[
|
||
|
f(-1) = - 8 \times - 1^{2} + 48 \times - 1 + 56=- 8 \times 1 - 48 + 56=- 8 + 8=0
|
||
|
\]
|
||
|
\item Pas de solutions automatiques.
|
||
|
\item Pas de solutions automatiques.
|
||
|
\end{enumerate}
|
||
|
\end{solution}
|
||
|
|
||
|
|
||
|
|
||
|
%\printsolutionstype{exercise}
|
||
|
|
||
|
|
||
|
|
||
|
\end{document}
|
||
|
|
||
|
%%% Local Variables:
|
||
|
%%% mode: latex
|
||
|
%%% TeX-master: "master"
|
||
|
%%% End:
|