2020-2021/TST/DM/2010_DM1/TST1/15_2010_DM1.tex

142 lines
5.3 KiB
TeX
Raw Normal View History

2020-10-15 20:15:28 +00:00
\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}
% Title Page
\title{DM1 \hfill HUMBERT Rayan}
\tribe{TST}
\date{Toussain 2020}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Fractions}]
Faire les calculs avec les fraction suivants
\begin{multicols}{3}
\begin{enumerate}
\item $A = \dfrac{- 9}{5} - \dfrac{7}{5}$
\item $B = \dfrac{- 1}{6} - \dfrac{- 6}{54}$
\item $C = \dfrac{4}{10} + \dfrac{10}{9}$
\item $D = \dfrac{9}{5} + 8$
\item $E = \dfrac{- 2}{4} \times \dfrac{8}{3}$
\item $F = \dfrac{- 7}{4} \times 10$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\[
\dfrac{- 9}{5} - \dfrac{7}{5}=\dfrac{- 9}{5} - \dfrac{7}{5}=\dfrac{- 9 - 7}{5}=\dfrac{- 9 - 7}{5}=\dfrac{- 16}{5}
\]
\item
\[
\dfrac{- 1}{6} - \dfrac{- 6}{54}=\dfrac{- 1}{6} + \dfrac{6}{54}=\dfrac{- 1 \times 9}{6 \times 9} + \dfrac{6}{54}=\dfrac{- 9}{54} + \dfrac{6}{54}=\dfrac{- 9 + 6}{54}=\dfrac{- 3}{54}
\]
\item
\[
\dfrac{4}{10} + \dfrac{10}{9}=\dfrac{4 \times 9}{10 \times 9} + \dfrac{10 \times 10}{9 \times 10}=\dfrac{36}{90} + \dfrac{100}{90}=\dfrac{36 + 100}{90}=\dfrac{136}{90}
\]
\item
\[
\dfrac{9}{5} + 8=\dfrac{9}{5} + \dfrac{8}{1}=\dfrac{9}{5} + \dfrac{8 \times 5}{1 \times 5}=\dfrac{9}{5} + \dfrac{40}{5}=\dfrac{9 + 40}{5}=\dfrac{49}{5}
\]
\item
\[
\dfrac{- 2}{4} \times \dfrac{8}{3}=\dfrac{- 2 \times 8}{4 \times 3}=\dfrac{- 16}{12}
\]
\item
\[
\dfrac{- 7}{4} \times 10=\dfrac{- 7 \times 10}{4}=\dfrac{- 70}{4}
\]
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Développer réduire}]
Développer puis réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $A = (3x - 5)(- 3x - 5)$
\item $B = (3x + 4)(- 10x + 4)$
\item $C = (3x - 3)^{2}$
\item $D = 8 + x(- 6x + 5)$
\item $E = - 3x^{2} + x(2x - 3)$
\item $F = 5(x - 9)(x + 4)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
A &= (3x - 5)(- 3x - 5)\\&= 3x \times - 3x + 3x \times - 5 - 5 \times - 3x - 5 \times - 5\\&= 3 \times - 3 \times x^{1 + 1} - 5 \times 3 \times x - 5 \times - 3 \times x + 25\\&= - 15x + 15x - 9x^{2} + 25\\&= (- 15 + 15) \times x - 9x^{2} + 25\\&= 0x - 9x^{2} + 25\\&= - 9x^{2} + 25
\end{align*}
\item
\begin{align*}
B &= (3x + 4)(- 10x + 4)\\&= 3x \times - 10x + 3x \times 4 + 4 \times - 10x + 4 \times 4\\&= 3 \times - 10 \times x^{1 + 1} + 4 \times 3 \times x + 4 \times - 10 \times x + 16\\&= 12x - 40x - 30x^{2} + 16\\&= (12 - 40) \times x - 30x^{2} + 16\\&= - 30x^{2} - 28x + 16
\end{align*}
\item
\begin{align*}
C &= (3x - 3)^{2}\\&= (3x - 3)(3x - 3)\\&= 3x \times 3x + 3x \times - 3 - 3 \times 3x - 3 \times - 3\\&= 3 \times 3 \times x^{1 + 1} - 3 \times 3 \times x - 3 \times 3 \times x + 9\\&= - 9x - 9x + 9x^{2} + 9\\&= (- 9 - 9) \times x + 9x^{2} + 9\\&= 9x^{2} - 18x + 9
\end{align*}
\item
\begin{align*}
D &= 8 + x(- 6x + 5)\\&= 8 + x \times - 6x + x \times 5\\&= - 6x^{2} + 5x + 8
\end{align*}
\item
\begin{align*}
E &= - 3x^{2} + x(2x - 3)\\&= - 3x^{2} + x \times 2x + x \times - 3\\&= - 3x^{2} + 2x^{2} - 3x\\&= - 3x^{2} + 2x^{2} - 3x\\&= (- 3 + 2) \times x^{2} - 3x\\&= - x^{2} - 3x
\end{align*}
\item
\begin{align*}
F &= 5(x - 9)(x + 4)\\&= (5x + 5 \times - 9)(x + 4)\\&= (5x - 45)(x + 4)\\&= 5x \times x + 5x \times 4 - 45x - 45 \times 4\\&= 4 \times 5 \times x - 180 + 5x^{2} - 45x\\&= 20x - 180 + 5x^{2} - 45x\\&= 5x^{2} + 20x - 45x - 180\\&= 5x^{2} + (20 - 45) \times x - 180\\&= 5x^{2} - 25x - 180
\end{align*}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Étude de fonctions}]
Soit $f(x) = 9x^{2} + 153x + 648$ une fonction définie sur $\R$.
\begin{enumerate}
\item Calculer les valeurs suivantes
\[
f(1) \qquad f(-2)
\]
\item Dériver la fonction $f$
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item On remplace $x$ par les valeurs demandées
\[
f(1) = 9 \times 1^{2} + 153 \times 1 + 648=9 \times 1 + 153 + 648=9 + 801=810
\]
\[
f(-1) = 9 \times - 1^{2} + 153 \times - 1 + 648=9 \times 1 - 153 + 648=9 + 495=504
\]
\item Pas de solutions automatiques.
\item Pas de solutions automatiques.
\end{enumerate}
\end{solution}
%\printsolutionstype{exercise}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: