58 lines
909 B
TeX
58 lines
909 B
TeX
|
\documentclass[14pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Terminale ST \\ Spé sti2d
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 1}
|
||
|
Soit $f(x) = a e^{0.1x} + 2$.
|
||
|
|
||
|
On suppose que $f(0) = 5$.
|
||
|
|
||
|
Retrouver la valeur de $a$.
|
||
|
|
||
|
\vfill
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
Démontrer que
|
||
|
\[ F(x) = (2x+1)e^{-0.5x} + 10
|
||
|
\]
|
||
|
est une primitive de
|
||
|
\[
|
||
|
f(x) = (-x+1.5°e^{-0.5x}
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
Soit
|
||
|
\[
|
||
|
z = -\sqrt{3}- i
|
||
|
\]
|
||
|
On donne $r = |z| = 2$.
|
||
|
|
||
|
Déterminer l'argument de $z$.
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|