Rang de l'année $x_i$& 0 &1 &2 &3 &4 &5 &6\\\hline
Chiffre d'affaires $y_i$
(en millions d'euros) &18,3 &20,1 &23,3 &25,3 &27,8 &30,6 &32,4\\\hline
\end{tabularx}
\end{center}
\medskip
\textbf{Partie A : étude d'un premier modèle}
\medskip
\begin{enumerate}
\item Sur le graphique donné à la fin de l'exercice , représenter le nuage de points de coordonnées $\left(x_i~;~y_i\right)$ pour $i$ variant de $0$ à $6$.
\item
\begin{enumerate}
\item À l'aide de la calculatrice, donner une équation de la droite d'ajustement affine de $y$ en $x$ obtenue par la méthode des moindres carrés. Les coefficients seront arrondis au centième.
Dans la suite, on choisit la droite d d'équation $y =2,4x +18,1$ comme ajustement affine du nuage de points.
\item Tracer la droite $d$ sur le même graphique donné en annexe.
\end{enumerate}
\item En supposant que cet ajustement demeure valable pendant plusieurs années, donner par lecture graphique le chiffre d'affaires de cette entreprise en 2020. Arrondir au million près.
\end{enumerate}
\medskip
\textbf{Partie B : étude d'un second modèle}
\medskip
\begin{enumerate}
\item Déterminer, à l'aide du tableau, le taux d'évolution global du chiffre d'affaires de l'entreprise entre 2010 et 2016. On exprimera le résultat en pourcentage arrondi au centième.
\item Déterminer le taux d'évolution moyen annuel entre 2010 et 2016, exprimé en pourcentage arrondi à l'entier le plus proche.
\item On suppose que le taux d'évolution annuel sera de 10\,\% entre 2016 et 2020. Estimer le chiffre d'affaires de l'entreprise en 2020. Arrondir au million près.