\begin{exercise}[subtitle={Étude des variations d'un polynôme de degré 3 pas à pas}, step={1}, origin={Création}, topics={Etude Polynomes}, tags={analyse, fonctions, tableau de variations, dérivation}]
\begin{exercise}[subtitle={Profit masqués}, step={1}, topics={Etude de Polynomes}, tags={analyse, fonctions, tableau de variations, dérivation}]
Un usine produit chaque jours entre 0 et 50 milles masques. Une étude statistique a montré que les bénéfices pouvaient être modélisés par la fonction suivante:
\[
f(x) = x^3 - 96x^2+2489,25x - \np{10171,25}
\]
\begin{enumerate}
\item Démontrer que $f(x)=(x-5)(x-39,5)(x-51,5)$.
\item Étudier le signe de $f(x)$.
\item En déduire le nombre de masque que l'entreprise doit produire pour gagner de l'argent.
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Vienoiseries}, step={1}, topics={Etude de Polynomes}, tags={analyse, fonctions, tableau de variations, dérivation}]
% Inspiré de T1CMATH00290
Un artisan produit et vend des sachets de viennoiseries. En notant, $x$ le nombre de sachets de viennoiseries ses coûts sont calculables avec la formule suivante:
\[
C(x) = x^3 - 120x^2 + 10x
\]
\begin{enumerate}
\item Calculer le coût de production pour 75 sachets.
\item Chaque sachet est vendu 10\euro. On rappelle que les bénéfices se calculent en faisant la différence (la soustraction) des recettes et des coûts.
\begin{enumerate}
\item On suppose que l'on vend 50 lots. Calculer les recettes, les coûts puis les bénéfices.
\item Justifier que le bénéfice se calcule alors avec la formule suivante:
\[
B(x) = - x^3 + 120x^2
\]
\item Démontrer que $B(x)$ peut s'écrire
\[
B(x) = x^2(120-x)
\]
\item Étudier le signe de $B(x)$.
\item En déduire la production maximal avant que l'artisan commence à perdre de l'argent.
\end{enumerate}
\item Recherche du maximum des bénéfices.
\begin{enumerate}
\item Déterminer $B'(x)$ la dérivée de $B(x)$.
\item Montrer que l'on peut écrire
\[
B'(x) = 3x(80-x)
\]
\item Étudier le signe de $B'(x)$ et en déduire les variations de $B(x)$.
\item En déduire le nombre de sachet que l'artisan doit produire pour maximiser ses bénéfices.
\item Proposer une factorisation de $g$ en se basant sur les racines.
\item Démontrer que cette factorisation est juste par un calcul.
\item Étudier le signe de $g(x)$.
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Constructeur de Machins}, step={3}, origin={Nathan 2ST 1P119}, topics={Etude de Polynomes}, tags={analyse, fonction}]
Une entreprise fabrique des \textit{machins}. Chaque jour, elle peut en produire entre 0 et 80 tonnes.
Le coût de fabrication, en euros, de $x$ tonnes est modélisé par la fonction $C(x)$ représentée dans le graphique ci-dessous.
\noindent
\begin{minipage}{0.5\linewidth}
\begin{enumerate}
\item\textbf{Lecture graphique:} Répondre aux questions suivantes par lecture graphique.
\begin{enumerate}
\item Combien coûte la production de 50tonnes de \textit{machins}.
\item Quelle quantité de \textit{machins} peut-on produire pour une coût de fabrication de \np{100000}\euro?
\end{enumerate}
\item\textbf{Étude des recettes:} Une tonne de \textit{machins} est vendue \np{1900}\euros. La recette pour $x$ tonnes peut donc être modélisée par la fonction $R(x)=1900x$.
\begin{enumerate}
\item Reproduire la représentation graphique de la fonction $R(x)$.
\item L'entreprise réalise-t-elle des bénéfices en produisant 10tonnes?
\item Déterminer graphiquement les productions où ses bénéfices sont positifs.
\item\textbf{Étude des bénéfices:} On admet que les bénéfices peuvent être modélisés par la fonction $B(x)=-x^3+105x^2-1800x -4000$ sur $\intFF{0}{80}$.
\begin{enumerate}
\item Calculer $B'(x)$ la dérivée de $B(x)$.
\item Calculer $B'(10)$ et $B'(60)$
\item En déduire une forme factorisée de $B'(x)$.
\item Étudier le signe de $B'(x)$ et en déduire les variations de $B(x)$.
\item Compléter le tableau de variations de $B(x)$ avec les valeurs au bout des flèches.
\item Quelle quantité doit produire l'entreprise pour réaliser un bénéfice maximal. Que vaut ce bénéfice?
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Producteur de carottes}, step={3}, origin={Nathan 1ST 1P119}, topics={Etude de Polynomes}, tags={analyse, fonction}]
Une entrepise produit et vend des carottes. Elle a la capacité de produire entre 0 et 16 tonnes.
Le coût de production, en euro, de $x$ tonnes est modélisé par la fonnction
\[
C(x) = x^3 - 15x^2 + 78xx -650
\]
Chaque tonne de carottes est vendue 150\euro.
\begin{enumerate}
\item\textbf{Production de 3 tonnes de carottes}
\begin{enumerate}
\item Déterminer le coût de production de 3 tonnes de carottes.
\item Déterminer les revenus de la vente de 3 tonnes.
\item En déduire les bénéfices. L'entreprise réalise-t-elle des bénéfices?
\end{enumerate}
\item\textbf{Étude des bénéfices}
\begin{enumerate}
\item Déterminer l'expression des revenus $R(x)$ pour $x$ tonnes de carottes vendues.
\item En déduire que les bénéfices peuvent être modélisés par la fonction
\[ B(x)=-x^3+15x^2+72x +650\]
\item Calculer $B'(x)$
\item Calculer $B'(-2)$ et $B'(12)$. En déduire une forme factorisée de $B'(x)$.
\item Étudier le signe de $B'(x)$ puis en déduire les variations de $B(x)$ pour $x$ variant entre 0 et 16.
\item Quelles quantité de carottes doivent être vendues pour avoir un bénéfice maximal? Quel est alors ce bénéfice?
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Volume d'une boite}, step={3}, origin={Création}, topics={Etude de Polynomes}, tags={analyse, fonction}]
\notindent
\begin{minipage}{0.6\linewidth}
\textit{Cet exercice est une tache complexe. C'est à vous d'explorer et de mettre les maths qui vous semblent appropriés pour résoudre le problème}.
\medskip
On dispose d'une feuille cartonnée pour construire des boites sans couvercle.
Où doit-on plier les bords pour avoir une boite la plus grande possible?